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Mathematics is the part of physics where experiments are cheap

(Arnold, 1997)





About these notes

These notes are an introduction to nonlinear dynamics, chaos and
bifurcation theory, tailored for master students in Engineering with
some background in linear systems theory. This document is not in-
tended to be a substitute for a textbook on nonlinear dynamics; many
excellent books already exist, and some are mentioned throughout
these notes. Rather, these notes constitute a miniature list of top-
ics that anybody interested in nonlinear dynamics should at least
superficially understand, with just enough detail to give the reader
the tools to construct a coherent picture and decide which topics to
investigate further from standard textbooks.

The course from which these notes are taken is meant to give an
introductory view of the main features of nonlinear systems and dy-
namics from the point of view of systems analysis, which is the qual-
itative and quantitative study of a system’s behaviour, and to com-
plement the notions of nonlinear control synthesis taught in other
master courses. Along the way, we learn some notions of chaos and
fractal theory, which are at once a fascinating and essential element
of nonlinear dynamics.

The choice of topics touched on in this course is general enough
that it should be of interest to students in most domains of Engineer-
ing and Physics, as well as any reader interested in understanding
the mechanisms that decide the complex behaviour of natural and
human-designed processes.

To help the reader through these notes, I have highlighted theo-
rems, definitions, and remarks:

♦ Theorem
Theorems are highlighted like this. They form the rigorous struc-
ture of the theory we discuss in class.

⋆ Remarks are highlighted like this. They are not formal statements,
but they capture details that are worth reading twice.
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■ Definition
Definitions are highlighted like this. They set the stage for the
subsequent discussion. Highlighting should make it easier to find
them when you need to interpret a theorem or other concept.

Throughout sections you will find a set of examples that should
help you motivate and understand the theory; at the end of each
section, a set of exercises is given to test if you did. The answers to
most exercises are not printed, so you will have to reason and con-
vince yourself of the correctness of your answer. A printed answer is
typically too strong a temptation. There are some exceptions to this
rule, when exercises are especially challenging, or when I want to
suggest a particular way to answer a question. Even in these cases,
you should look at the answer only after you have spent some time
trying to answer the question yourself. Challenging exercises are
also marked by one or more stars (* Exercise).

On the right margin of some pages, you will find notes or figures.
These are comments and, sometimes, technicalities that were left out
of the main text and should not be necessary to follow it.



Introduction to dynamical systems

Keywords: Dynamical systems, existence and uniqueness theorems, trajectory or orbit.

Examples of nonlinear dynamical system

Example 1 (Pendulum). Consider the following model of a pendulum
with friction:

ẋ1 = x2,

ẋ2 = − g
l

sin(x1)−
k

ml2 x2.

The state x := (x1, x2) consists of the angular position x1, and the
angular velocity x2, while the parameters m, g, and l are mass, gravity,
and length of the arm. x1 = 0 represents the pendulum at rest in the
downward position, and x1 = π is the rest position in the upward position.
ẋ represents the derivative of x with respect to time.

From the model equations, we easily see that both the state (x1 = 0, x2 =

0) and the state (x1 = π, x2 = 0) imply ẋ = 0, that is, the system has two
equilibria. Since linear systems can only have zero, one, or infinitely many
equilibria, the full behaviour of this system and the relation between its two
equilibria can only be studied in a nonlinear model.

Example 2 (Repressilator). The repressilator is an oscillating gene regu-
latory network that was first realised and discussed by Elowitz and Leibler,
2000. The network consists of three genes, each encoding a protein, each
protein repressing the expression of the next gene in a loop.

The action of the three genes, plus a fourth (GFP) that was used to ex-
press a fluorescent protein to measure oscillations, is represented by the
following scheme, where the ⊥ symbol means ’represses’. The network was

Figure 1: Image from Wikipedia
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modelled by the following system of differential equations

ṁlacl = −mlacl +
α

1 + pcl
+ α0,

ṗlacl = −β(placl −mlacl),

ṁtetR = −mtetR +
α

1 + placl
+ α0,

ṗtetR = −β(ptetR −mtetR),

ṁcl = −mcl +
α

1 + ptetR
+ α0,

ṗcl = −β(pcl −mcl),

where mi are concentrations of mRNA and p are concentrations of protein.
A numerical simulation of the system shows that the concentrations of the
proteins, for plausible values of the parameters, oscillate in time. This was
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Figure 2: Image from Elowitz and
Leibler, 2000

the first reported oscillatory network obtained by genetic engineering, de-
signed from scratch from the above model and implanted in E. Coli bacteria.
Unlike linear systems, this model oscillates on a unique, isolated limit cy-
cle, regardless of the initial conditions. Therefore, after some transient, its
output (measured as the density of the fluorescent protein) oscillates with a
set frequency and amplitude, which is always the same and only depends on
the model parameters.

Example 3 (Mass-spring-damper with nonlinear spring). The follow-
ing equations model a spring-mass-damper system with a nonlinear spring,
whose elastic coefficient increases with increasing displacement:

ẋ1 = x2,

ẋ2 = −x1(1 + 10x2
1)− x2 + A sin(2πt).

If the system were fully linear, we would expect to observe an oscillation of
the position x1 that is sinusoidal of frequency 1, just like the input. If, on top
of the linear dynamics, we assume some nonlinear output function, we can
expect to see this sinusoidal signal nonlinearly deformed at the output. We
will therefore see an oscillation of frequency 1, together with its harmonics:
oscillations with frequencies that are integer multiples of 1.

The system in this example however is not just a linear system with a
nonlinear output function, it is a fully nonlinear dynamical system. Let us
see what happens to x1(t) as A changes from 400 to 450.
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The subharmonic, visible in this
picture, is the result of a period-doubling
bifurcation.
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When A = 400, x1 is a periodic signal of period 1, as expected. When
A = 450, however, x1 has period 2! The nonlinear dynamics have generated
a subharmonic of the periodic input.

Example 4 (Tent map). Consider the following 1-dimensional discrete-
time system:

The tent map is, more precisely,
the parametric family of systems

x(t + 1) =

{
px(t, ) x(t) ≤ 0.5,
p(1− x(t)), x(t) > 0.5.x(t + 1) =

2x(t), x(t) ≤ 0.5,

2− 2x(t), x(t) > 0.5,

with x ∈ [0, 1]. This is known as the tent map.
As with all 1-dimensional discrete-time systems, we can represent its

dynamics by plotting f (x) and the bisectrix of the first quadrant in the
plane (x(t), x(t + 1)).
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This kind of plots are also known as
Lamerey diagram (Arnold, 1992)

The equilibria of the system are the points of intersection of f (x) and the
bisectrix. In this case, the system has two equilibria, and f (x) is continuous
but not everywhere differentiable.

Later on, we will learn that these two equilibria are both unstable, that
is, they tend to repel nearby orbits. So where do solutions of this system go?
We will see that this is a chaotic system: it has infinitely many unstable
limit cycles, and a non-periodic orbit that is dense in [0, 1].

Background

n is called the order of the dynamical
system

■ Definition: Dynamical system (continuous time)
A continuous time dynamical system is a system of equations

ẋ = f (x, t, u, p)

where

• x ∈ Rn is the state,

• ẋ is the time-derivative of the state,

• t ∈ R is the time,

• u ∈ Rm is the input,

• p ∈ Rq are the parameters,

• f is the vector field.

⋆ We will usually denote by xi the i-th component of x, and by fi

the i-th equation of the system f .
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■ Definition: Dynamical system (discrete time)
A discrete-time dynamical system is a system of equations

x(t + 1) = f (x(t), t, u(t), p),

where

• x ∈ Rn is the state,

• t ∈ Z is the time,

• u ∈ Rm is the input,

• p ∈ Rq are the parameters,

• f is the vector field.

■ Definition: Classes of systems
A system where

• f := f (x, t, p) is called autonomous,

• f := f (x, u, p) is called time-invariant,

• f := A(t, p)x + B(t, p)u is called linear,

• x ∈ Rn
+, ∀ t ≥ 0 is called positive,

• solutions x(t) are defined for both t ≥ 0 and t ≤ 0 is called
reversible.

Unless otherwise stated, in this course we will deal with autonomous,
time-invariant, continuous-time nonlinear systems. Often, when de-
pendence on parameters is not relevant, we will also omit p among
the arguments.

■ Definition: Phase space
The phase space is the set of all possible states of a dynamical
system

In most cases, we will assume that the phase space is Rn.

This definition applies both to continu-
ous and discrete-time systems.

■ Definition: Flow of an autonomous system
The map ϕt(x) : Rn → Rn, seen as a map from the phase space
to itself in the parameter t, which maps an initial state x to a state
x(t), is called the flow of the system.

We will use the same notation for the flow of discrete and continuous-
time systems. Depending on the case, the value of t is a real or an
integer number.
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■ Definition: Trajectory or Orbit
A trajectory or orbit of x, which we call ϕ·(x), is the set of states
spanned by ϕt(x) as t changes.

The term ’trajectory’, with this mean-
ing, is more often used in the control
theoretic literature. In the nonlinear
dynamics community the term ’orbit’
is more commonly used.

Example 5 (examples of orbit). Here are some examples of orbits.
In the following figure, we see an orbit converging to a stable focus in

the system

ẋ =

(
−1 10
−10 −1

)
x.

Notice that the orbit consists of all points of the spiral except the origin,
which is only reached asymptotically. The origin is an orbit by itself.
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−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

x 2

In the next figure, we see an orbit converging to a stable cycle in the system

This is known as the Rosenzweig-
MacArthur model (Rosenzweig and
MacArthur, 1963)

ẋ1 = 7x1(1− x1)−
50x1x2

1 + 50
15 x1

,

ẋ2 = −7x2 +
50x1x2

1 + 50
15 x1

.
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Once again, the cycle is not part of this orbit and is an orbit by itself.
Finally, the following figure shows the chaotic orbit in Lorenz’s system

ẋ1 = 10(x2 − x1),

ẋ2 = x1(28− x3)− x2,

ẋ3 = x1x2 −
8
3

x3.
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Figure 3: Edward Lorenz, by the
window at MIT’s Green Building (then
dept. of meteorology), studying the
first plots of the attractor.
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Existence and uniqueness of solutions

In the case of continuous-time systems, determining the set of values
of t where ϕt(x) is defined is not trivial. In particular, depending
on the continuity properties of the vector field, we can ensure the
existence of ϕt(x) in an interval around t = 0, or globally for all t.
These conditions are specified in the theorems that follow.

Note that the same problem is much simpler for discrete-time sys-
tems, as long as we only care about t ≥ 0.

In the formula, the norm ∥ · ∥ is any
vector norm.

We will sometimes use the term glob-
ally Lipschitz to distinguish functions
that not just locally Lipschitz.

■ Definition: Lipschitz function
f (x) is Lipschitz if there is a K such that, for all x, y ∈ Rn,

∥ f (x)− f (y)∥ ≤ K∥x− y∥;

f (x) is locally Lipschitz if for any x ∈ Rn there exists a neighbour-
hood of x where f (x) is Lipschitz (K can be different in different
neighbourhoods).

We can extend the above definition to time-dependent vector fields
as follows.

■ Definition: Uniformly Lipschitz function
f (x, t) is uniformly Lipschitz [resp. uniformly locally Lipschitz],
if it is Lipschitz [resp. locally Lipschitz] for all fixed t

Consider now a continuous-time system.

The complete theorem actually pro-
vides an estimate of the size of the
t-neighbourhood, based on the size of
the x-neighbourhood. See e.g. (Meiss,
2007)

♦ Picard-Lindelöf existence and uniqueness theorem
Let f (x) be locally Lipschitz in Rn. Then the flow ϕt(x) exists and
is unique in a compact neighbourhood of t = 0.

In other words, the above theorem is stating that, if f (x) is lo-
cally Lipschitz, then a single orbit passes through x̄: different orbits
don’t intersect. Moreover, given that a neighbourhood must (by def-
inition!) contain x in its interior, the orbit exists both for t > 0 and
t < 0, provided that |t| is small enough. Note that functions that
are continuously differentiable on a compact and convex set are also
Lipschitz in the set 1, therefore continuous differentiability can be 1 see e.g., Arnold, 1992, p273

substituted to Lipschitz continuity to obtain a slightly more restric-
tive version of the result. Finally, note that the above theorem can
be extended to time-variant vector fields f (x, t), by asking that the
vector field be uniformly locally Lipschitz, and continuous in t in a
compact neighbourhood of t = 0.

Most of the tools that we study in this course refer to the behaviour
of a system in some neighbourhood of one of its orbits, for instance,
an equilibrium or a periodic orbit. In all these cases, the Picard-
Lindelöf theorem is all we need to ensure that orbits are well-behaved
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in such a neighbourhood. In some cases, we may want to prove that
ϕt(x) exists for all t ∈ R. In these cases, there are different ways
forward, the two following theorems discuss in particular the case of
a time-invariant system.

♦ Bounded global existence
If f (x) is locally Lipschitz and bounded, then ϕt(x) exists for all
t ∈ R.

Any vector field f that is locally Lips-
chitz unbounded can be made bounded
by the time-reparametrization

dy
dτ

=
f (y)

1 + | f (y)| .

♦ Global existence
If f (x) is (globally) Lipschitz, then ϕt(x) exists for all t ∈ R.

Given all of the above results, one may be interested in under-
standing how, in the lack of the conditions for global existence, the
flow may fail to exist for some finite t. We will see in Exercise 2 an
example of how this happens. In general, it is useful to know the
following.

See e.g. Theorem 3.3 in Khalil, 2002.

♦ Theorem
If ϕt(x) ∈ D does not exist for all t ≥ 0, then ϕt(x) must escape
any compact neighbourhood of x for sufficiently large t.

In other words, if the flow does not exist for all t, this is caused by
the solution going to infinity.

All the above theorems provide conditions for the existence of
solutions in a neighbourhood of t = 0, that is, the solution is well-
defined both forward and backwards in time. When any one of these
results holds, we can say that the system is reversible:

■ Definition: Reversibility
A system is reversible if, for all x, ϕt(x) exists and is unique in an
open neighbourhood of t = 0.

⋆ A continuous-time system that satisfies the conditions of any one
of the above theorems is reversible.

As we said before, the existence and uniqueness of the solutions
of a discrete-time system forward in time is not an issue. However,
in general, discrete-time systems do not have unique solutions back-
wards in time. This is unless f (x) is injective. We thus have the
following fact

⋆ Discrete-time systems are, in general, not reversible.

Given our definition of orbit and the concept of reversibility, we
can observe that
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⋆ If a system is reversible, its orbits form a partition of the phase
space.

Example 6. The tent map:

x(t + 1) =

2x(t), x(t) ≤ 0.5,

2− 2x(t, x(t) > 0.5,
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which we have seen before, is a 1-dimensional not reversible discrete-time
system: states that are symmetric with respect to x = 0.5 are mapped to the
same state.

Exercises

Exercise 1

Consider a stable linear system with a sinusoidal input of period 1,
and an output function y = g(x), with g possibly nonlinear. Ex-
plain why y can only have frequency components that are integer
multiples of 1.

Exercise 2

Discuss the existence and uniqueness of the flow of

ẋ = x2.

Answer of exercise 2

Take any fixed x̄ and a compact neighbourhood N of x̄. We have

| f (y)− f (x)| ≤ max
x∈N

∂ f
∂x
|y− x|.

Therefore, f (x) is Lipschitz on any compact neighbourhood, so by
the Picard-Lindelöf theorem ϕt(x) exists and is unique in a neigh-
bourhood of t = 0.

However, f (x) is not globally Lipschitz and is not bounded, so
ϕt(x) does not exist for all t ∈ R.
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In this simple case, we can see what happens by explicitly solving
the differential equation. Integrating by parts we have

dx
x2 = dt,

which gives

− 1
x
= t + c⇒ x =

1
1

x(0) − t
.

If x(0) is negative, x(t) tends to 0 as 1
t . If, however, x(0) is positive,

x(t) goes to ∞ as t → 1
x(0) . That is, the orbit is defined on the full

real line, but the flow is only defined over a bounded time interval.
A similar reasoning holds for t→ −∞.

Exercise 3

Consider the system
ẋ = x2 − 1,

with state defined in the closed interval [−1, 1]. How many orbits
does this system have?

Exercise 4

Prove that the flow of the linear system

ẋ = Ax

exists for all t.

Hint: use the induced matrix norm
∥A∥.
Note that, if ∥ · ∥ is the Euclidean
norm, then ∥A∥ is the largest singular
value of A, that is, the square root of
the largest eigenvalue of AT A.

Exercise 5

Prove that the flow of
ẋ = |x|

exists for all t.

Exercise 6

Determine which of the following continuous and discrete-time
systems are reversible:

• ẋ = x2,

• ẋ = cos(x)− x,

• x(t + 1) = x2,

• x(t + 1) = x3,

• x(t + 1) = x3 − x.

Exercise 7

Consider the control system

ẋ1 = x1 + u,

ẋ2 = −2x1 + 2x2 + x3
1 + u,

u = −18x1 + 12x2.
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1. Is it a continuous or discrete time system?

2. Is it autonomous or non-autonomous?

3. Is it time-invariant?

4. Is it linear or nonlinear?

5. Which of these sets could be a phase space?

• x1 ∈ R,

• (x1, x2) ∈ R2,

• (x1, x2, u) ∈ R3.

Exercise 8

Compute, graphically, the evolution of this map starting from each
of the equilibria
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Exercise 9

Let F(t) be the t-th term of the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13 . . .
The sequence is an orbit, for suitable initial conditions, of the x2 vari-
able of the discrete-time dynamical system

x1(t + 1) = x2(t)

x2(t + 1) = x1(t) + x2(t)

Discuss the truth of the following statement:

lim
t→∞

ct

F(t)
= 0, ∀ c ∈ R,

i.e., the Fibonacci sequence grows faster than any exponential.



Equilibria and fixed points

Keywords: Equilibrium, fixed point, Lyapunov stability, asymptotic stability, GAS, positively invariant
set, Lyapunov theorem, LaSalle invariance principle.

Definition of equilibrium and fixed points

We have discussed, in the previous chapter, the conditions that guar-
antee the existence of the flow and the orbit of a dynamical system.
It is now time to learn to characterize the behaviour of these solu-
tions, and we start by investigating systems near the simplest kind
of orbits, those where the flow is constant. We call these equilibria
or fixed points, reserving the use of these two names to continuous
and discrete-time systems, respectively.

■ Definition: Equilibrium
An equilibrium of an autonomous continuous-time system is a
state x where f (x) = 0.

■ Definition: Fixed point
A fixed point of an autonomous discrete-time system is a state x
where f (x) = x.

■ Definition: Equilibrium or fixed point of non-autonomous sys-
tems
An equilibrium [resp., fixed point] of a non-autonomous system
is a pair (x, u), with u constant, where f (x, u) = 0 [resp., where
f (x, u) = x].

In the linear world, the Rouchè Capelli theorem limits most sys-
tems to have a unique equilibrium.
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⋆ Equilibria and fixed points of a linear system
The continuous-time linear system

ẋ = Ax + Bu,

with u(t) = ū has a unique equilibrium in −A−1Bū, provided that
A is non-singular, otherwise it has infinitely many equilibria.
The discrete-time linear system

x(t + 1) = Ax(t) + Bu(t),

with u(t) = ū has a unique fixed point in −(A− I)−1Bū, provided
that A− I is non-singular, otherwise it has infinitely many fixed
points.

The analysis of equilibria and fixed points of nonlinear systems is,
however, significantly more complex. Take for instance the following
models:

Example 7. Consider the logistic map

x(t + 1) = 4x(t)(1− x(t))
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Its fixed points are the solutions of

x = 4x− 4x2.

Point x = 0 is obviously a fixed point, while a second fixed point is x = 3
4 .

Example 8. The Rosenzweig-MacArthur model of a prey-predator food
chain is

ẋ1 = rx1

(
1− x1

K

)
− ax1x2

1 + ahx1
,

ẋ2 = −dx2 +
eax1x2

1 + ahx1
,

where x1 is the total mass of prey and x2 is the total mass of predators.
The equilibria of the system are all pairs (x1, x2) where both f1 = 0 and

f2 = 0. Predictably, x1 = 0 and x2 = 0 are an equilibrium (a food chain
with no animals remains such). Also, x2 = 0 and x1 = K is an equilibrium
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(a food chain with no predators, where the prey reaches its carrying capacity
K).

A third equilibrium is a little more challenging to compute. From the
law of ẋ2, assuming x2 ̸= 0, we have

x̄1 =
d

ea− dah
.

Moreover, from this same equation, we see that ax1
1+ahx1

= d
e . Substituting

this in the law of ẋ1 we have

rx1

(
1− x1

K

)
− d

e
x2 = 0,

so

x̄2 =
e
d

rx̄1

(
1− x̄1

K

)
.

When this equilibrium is positive, it represents a state where prey and preda-
tors coexist.

Probably the first mathematical
model of population dynamics was
Fibonacci’s model of a population of
rabbits (Fibonacci, 1202)(chapter XII,
part 7.30), which in modern discrete-
time systems theory is described by
the system

x1(t + 1) = x2(t)

x2(t + 1) = x1(t) + x2(t).

Here, x1(t) represents the number of
pairs of juvenile rabbits at month t,
and x2(t) is the number of pairs of
adult rabbits.

The next relevant step was taken by
Thomas Robert Malthus, who wrote
an influential essay on population
dynamics (Malthus, 1798), stating that
when free of the constraints of limited
resources, populations tend to grow
exponentially. Nowadays we would
formalize this statement as

ẋ = rx,

which is indeed known as the Malthu-
sian growth model.

An improved mathematical model,
accounting for the effects of limited
resources on population growth, was
then discussed by Verhulst (1845), who
formulated the logistic growth model

ẋ = rx
(

1− x
k

)
.

The interaction of a prey and a
predator species was first modelled
with differential equations by Volterra
(1926), and the same equations were
studied by Lotka (1920) in the context
of chemical reactions. The model was

ẋ1 = ax1 − bx1x2

ẋ2 = cx1x2 − dx2.

The model by Rosenzweig and
MacArthur (1963) is an evolution
of the Lotka-Volterra, that utilizes a
logistic growth model for the prey x1,
and an improved model for the prey-
predator interaction, known as the
Holling type-II functional response.
Note that, when x2 = 0, the dynamics
of the prey is the logistic equation
ẋ1 = rx1

(
1− x1

K
)
.

In the above example, we have seen how the computation of the
third equilibrium requires significantly more effort than in the case
of a linear system; things are even worse than it may look:

⋆ There is no explicit formula for the computation of all equilibria
of an arbitrary nonlinear system.

Therefore, even determining the number and location of equilibria
can be a challenging task.

Stability of equilibria and fixed points

When we study the equilibria or the fixed points of a dynamical sys-
tem, one of the first properties we typically want to ascertain is its
stability. Loosely speaking, this indicates whether a small pertur-
bation from the equilibrium should evolve towards the equilibrium,
or away from it. The practical implication of stability is obvious: a
system’s state will tend to stay close to its stable equilibria or fixed
points, even in the presence of a little bit of noise, but will diverge
from its unstable equilibria or fixed points as soon as the state is
affected by an arbitrarily small perturbation.

■ Definition: Lyapunov stability
An equilibrium or fixed point x̄ is Lyapunov stable if, for every
neighbourhood N of x̄, there exists a neighbourhood M ⊂ N such
that

x ∈ M⇒ ϕt(x) ∈ N, ∀ t ≥ 0.

Aleksandr Lyapunov [1857-1918]
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■ Definition: Unstable equilibrium or fixed point
An equilibrium or fixed point that is not Lyapunov stable is un-
stable.

■ Definition: Asymptotic stability
An equilibrium or fixed point x̄ is asymptotically stable if it is
Lyapunov stable, and there exists a neighbourhood N of x̄ such
that

lim
t→∞

ϕt(x) = x̄, ∀ x ∈ N.

■ Definition: Global asymptotic stability (GAS)
An equilibrium or fixed point x̄ is globally asymptotically stable
(GAS) if it is asymptotically stable with neighbourhood N = Rn.

There is yet another definition of stability, sometimes used in con-
trol theory.

■ Definition: Global exponential stability
A GAS equilibrium or fixed point x̄ is globally exponentially sta-
ble if there exist constants a > 0, b > 0 such that

∥x(t)− x̄∥ ≤ ae−bt∥x(0)− x̄∥

for all t > 0.

Global exponential stability is a stronger form of GAS, as it guar-
antees a bound on the speed of convergence of x to x̄. However,
while all other forms of stability that we have seen so far charac-
terize a given equilibrium regardless of a choice of variables (i.e.,
regardless of how we choose to represent a system), global exponen-
tial stability does instead depend on the choice of variables, as the
following example shows.

Example 9. Consider the system

ẋ = −x,



equilibria and fixed points 25

which obviously has a single equilibrium in 0 that is GAS and exponentially
stable over the whole real line, therefore is globally exponentially stable. Take
the new variable

y =

ln(x + 1), x ≥ 0,

− ln(−x + 1), x < 0.

The inverse change of variables is

x =

ey − 1, y ≥ 0,

1− e−y, y < 0.

This gives

ẏ =

 ẋ
x+1 = e−y − 1, y > 0,

ẋ
1−x = 1− ey, y < 0.

For large enough |y(0)| we have |y(t)| ≃ |y(0)| − t, while global exponen-
tial stability would imply that, given any constant c, there exists a time t̄
such that

|y(t̄)| ≤ c|y(0)|, ∀ y(0).

The equilibrium in the new variables is therefore no longer globally expo-
nentially stable.

Stability criteria for continuous-time systems

Let us now look at the tools that we have in our toolbox to prove that
an equilibrium is stable. We start from the well-known eigenvalue
criterion for linear systems. Call λ1 the dominant eigenvalue of the
A matrix of the linear system, that is, the rightmost eigenvalue in the
complex plane (or one of the rightmost ones, if there are more than
one).

♦ Eigenvalue criterion for linear systems

• If ℜ(λ1) < 0, the linear system is asymptotically stable;

• if ℜ(λ1) > 0, the linear system is unstable;

• if ℜ(λ1) = 0 and the geometric multiplicity of the eigenvalues
with ℜ(λi) = 0 equals their algebraic multiplicity, the linear
system is Lyapunov stable but not asymptotically stable;

• if ℜ(λ1) = 0 and the geometric multiplicity of the eigenval-
ues with ℜ(λi) = 0 is less than their algebraic multiplicity, the
linear system is unstable.

Notice how, in the above theorems, we have talked about stability
of a system, which is of course a meaningless concept in nonlinear
systems, which can have an arbitrary number of equilibria with dif-
ferent stability. We may however expect that, besides this difference,
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the above theorems could translate into equivalent criteria for non-
linear systems, at least as long as we consider dynamics sufficiently
close to the equilibrium. This is true, but only to an extent, as we will
soon learn that in some circumstances the eigenvalue criterion can-
not be applied to equilibria of a nonlinear system. To start looking
into this issue, let us review the relation between linear and nonlin-
ear equilibria: the linearization process. We consider in the following
the case of an autonomous vector field f (x), but the extension to the
case of a nonautonomous vector field f (x, u) subject to a constant
input u = ū is rather simple.

■ Definition: Jacobian matrix
Given a differentiable vector field f (x), its Jacobian J f (x) is the
matrix of partial derivatives

∂ f1
∂x1

∂ f1
∂x2

· · ·
∂ f2
∂x1

∂ f2
∂x2

· · ·
...

...

 .

■ Definition: Linearisation
Given a nonlinear vector field f (x) and one of its equilibria x̄, the
linearisation at the equilibrium is the linear system

ξ̇ = J f (x̄)ξ,

where J f (x̄) is the Jacobian of f evaluated at the equilibrium x̄,
and ξ is a perturbation to x.

Note that, in this formula, the Jaco-
bians are numerical matrices.

Through these tools, we can formulate the eigenvalue criterion for
nonlinear systems.

♦ Eigenvalue criterion for nonlinear systems
Let J f (x) be the Jacobian of a vector field f (x) with respect to the
state x, and let x̄ be an equilibrium. If all eigenvalues of J f (x̄)
have a negative real part, then the equilibrium x̄ of the nonlinear
vector field f (x) is asymptotically stable. If at least one of the
eigenvalues of J f (x̄) has a positive real part, then x̄ is unstable.

This theorem was first proved by
Lyapunov in 1892. Notice how it does
not say anything about the case of a
dominant eigenvalue on the imaginary
axis.

In cases where an equilibrium with no positive eigenvalues has
some on the imaginary axis, the analysis of the linearisation does
not tell us anything about stability. To discuss more thoroughly this
issue we will need the Hartman-Großman theorem, which we will
see later. In the meantime, we can reformulate the above criterion
using the concept of hyperbolic equilibrium:



equilibria and fixed points 27

■ Definition: Hyperbolic equilibrium or fixed point
An equilibrium [A fixed point] is hyperbolic if it does not have
eigenvalues on the imaginary axis [on the unit circle].

We can then say that

♦ Eigenvalue criterion for hyperbolic equilibria
The stability of a hyperbolic equilibrium x̄ of a nonlinear vec-
tor field f (x) coincides with the stability of the linearisation
ξ̇ = J f (x̄)ξ.

Example 10. Consider again the logistic model

ẋ = x(1− x)

and its two equilibria x = 0 and x = 1. In 0 we have

J f (0) = [1− 2x]x=0 = 1,

while in 1 we have

J f (1) = [1− 2x]x=1 = −1.

This confirms what we proved earlier, that x = 0 is unstable, while x = 1
is asymptotically stable.

Consider instead the modified model

ẋ = x3(1− x),

which still has two equilibria, x = 0 and x = 1. We have J f (1) = −1, as
before, but J f (0) = 0. The linearisation would classify the equilibrium in
0 as Lyapunov (but not asymptotically) stable. Let us look, however, at the
plot of f (x) near x = 0:
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We have that f (x) < 0 for x < 0, and f (x) > 0 for x > 0, for x small
enough. x = 0 must therefore be unstable.

The case of purely imaginary eigenvalues is not the only limita-
tion of the eigenvalue criterion. A second, important limitation is
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that it provides no means to understand how far from the equilib-
rium the stability property holds. If multiple, stable equilibria are
present, we should in fact expect different initial conditions to con-
verge to different equilibria. Given these limitations, we should move
on to see some more stability criteria, typically less simple but more
informative in the context of nonlinear dynamics.

■ Definition: Positive definite function
A function V(x) : Rn → R is positive definite if

V(x̄) = 0

for some x̄, and
V(x̄) > 0

for all x ̸= x̄.

The definition of negative definite
is simply obtained be reversing the
inequality.

For example,

x2

and

|x|

are positive definite, but also

xT Px,

where P is any symmetric matrix with positive eigenvalues, is posi-
tive definite.

■ Definition: Positive semidefinite function
A function V(x) : Rn → R is positive semidefinite if

V(x̄) = 0

for some x̄, and
V(x̄) ≥ 0

for all x ̸= x̄.

For a proof see, e.g. (Khalil, 2002)

Continuously differentiable = continu-
ous with continuous derivative

♦ Lyapunov theorem
Let x be the state of a dynamical system, x̄ an equilibrium, and
consider a continuously differentiable and positive definite func-
tion V(x), defined in a neighbourhood of x̄, with V(x̄) = 0. Then:

• if V̇(x) is negative semidefinite, then x̄ is Lyapunov stable;

• if V̇(x) is negative definite, then x̄ is asymptotically stable;

• if V̇(x) is positive definite, then x̄ is unstable.
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A function V(x) satisfying the above statement is called a Lya-
punov function. Note that nothing is required (not even existence)
from the Lyapunov function far away from the equilibrium. We
can however obtain a stronger result if V(x) exists in Rn and is un-
bounded, in the sense specified below.

♦ Lyapunov theorem and GAS (Barbashin-Krasovskii theorem)
If the above theorem holds with V̇ negative definite and defined
over all Rn, and V is radially unbounded, that is V(x) → +∞ as
∥x∥ → ∞, then x̄ is GAS.

Example 11. The scalar continuous-time system

ẋ = −x3

has an equilibrium in 0 with eigenvalue 0. Linear system theory would
classify it as Lyapunov stable, but not asymptotically. However, using the
Lyapunov function V(x) := x2, we see that

V̇(x) = −2x4,

which is negative definite and radially unbounded. The origin is therefore
GAS, though its linearisation is not.

Lyapunov theorem is used to discuss the stability of nonhyper-
bolic equilibria, but it does not provide a means to establish which
orbits converge to the equilibrium. This problem is addressed by an-
other theorem, proved by Lasalle and Krasovskii, starting from the
concept of invariant set.

Note that, so long as ϕt(x) ∈ S and S
is compact, the flow ϕt(x) exists for all
t ≥ 0. We have seen this together with
the Picard-Lindelöf theorem. Therefore
in this definition we can safely assume
existence of ϕt(x) for all t ≥ 0.

■ Definition: Positively-invariant set
A compact set S is positively invariant (with respect to a vector
field f (x)) if, for all x ∈ S, ϕt(x) ∈ S, for all t ≥ 0.

■ Definition: Invariant set
A compact set S is invariant (with respect to a vector field f (x)) if,
for all x ∈ S, ϕt(x) ∈ S, for all t ∈ R.

We can alternatively define an invariant set S as a set with the
following property:

x ∈ S⇒ ϕ·(x) ∈ S,

that is, an invariant set is a set that contains the entire orbit through
any of its points.

This result was developed indepen-
dently by LaSalle (who published it in
1960) and Krasovskii (in 1959), though
it is now more commonly known as
the LaSalle principle.

The hypothesis on V, of being contin-
uously differentiable on a compact set
M, implies that it is bounded in M.

♦ LaSalle (Krasovskii) invariance principle
Let M be a positively invariant subset of Rn, and consider a con-
tinuously differentiable function V(x), such that V̇(x) is negative
semidefinite in M. Let N be the set where V̇(x) = 0, and let P
be the largest invariant set within N. Then ϕt(x) approaches P as
t→ ∞, for all x ∈ M.
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⋆ Contrary to the Lyapunov theorem, the above principle does not
require that V be positive definite. Moreover, on top of determin-
ing the asymptotic behaviour of solutions, it allows us to deter-
mine a compact set M from which all initial conditions eventually
converge to P.

Nagumo’s theorem provides condi-
tions for the positive invariance of a set
using the concept of TM(x), the tangent
cone to M at x: it is the set of all z ∈ Rn

for which there exists a sequence

{x′1, x′2, . . .} ⊂ M, with xk
k→∞→ x, such

that
lim
k→∞

xk
∥xk∥

=
z
∥z∥ .

Then, assuming M is compact, we
have that M is positively invariant
provided that f (x) ∈ TM(x), for all
x ∈ M. See for example (Aubin, 1991)
or (Blanchini and Miani, 2008).

Here a short remark is due on the ways to prove that a given set M
is positively invariant. While the general theory of positively invari-
ant sets stands on an important result known as Nagumo’s theorem,
in our notes here we will always deal with fairly well-behaved sets,
which essentially fall under one of these two families

1. The compact set M is the sublevel set {x : V(x) ≤ c} of some
differentiable function V, and it is such that ∂V

∂x ̸= 0 for all x ∈ ∂M.

2. The compact set M is a polytope with a nonempty interior, de-
fined as the intersection of a finite set of half-spaces {x : gi(x) ≤
ci}, where gi(x) : Rn → R, i ∈ {1, . . . m} are m different linear
functions.

⋆ Proof of invariance of M, case 1
If M is as in case 1, invariance of M is guaranteed provided that
V̇(x) ≤ 0, for all x ∈ ∂M.

The above condition can be read as stating that, starting from any
point x on the boundary of M, the value V(x) that is found by fol-
lowing the flow ϕt(x) does not increase (at least for sufficiently small
t). This means that the flow is not crossing the boundaries outwards
from M. Similar reasoning supports the proof for case 2:

⋆ Proof of invariance of M, case 2
If M is as in case 2, invariance of M is guaranteed provided that
ġi(x) ≤ 0, for all x ∈ ∂M such that gi(x) = ci.

Example 12. Let us take the linear system

ẋ =

(
−1 0
0 −1

)
x,

and show that the region defined by the set of inequalities

x1 ≥ 0,

x2 ≥ 0,

x1 + 2x2 ≤ 4,

is positively invariant.
To proceed, we can write each of the inequalities in terms of a function

gi(x) that is negative within the region, and positive outside. Then, all
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that is left to show is that the derivatives of these functions along the flow
∂
∂t gi(x) are negative on all of the region sides. Of course, at corners defined
by the intersection between two gi(x) and gj(x), we must require both
∂
∂t gi(x) ≤ 0 and ∂

∂t gj(x) ≤ 0.
In our case, we can take

g1 = −x1,

g2 = −x2,

g3 = x1 + 2x2 − 4.

We have

∂

∂x
g1 ẋ =

(
−1 0

)(−1 0
0 −1

)
x = x1 = 0, ∀{x1 = 0, x2 ∈ [0, 2]};

∂

∂x
g2 ẋ =

(
0 −1

)(−1 0
0 −1

)
x = x2 = 0, ∀{x2 = 0, x1 ∈ [0, 4]};

∂

∂x
g3 ẋ =

(
1 2

)(−1 0
0 −1

)
x =

− x1 − 2x2 ≤ 0, ∀{x1 ∈ [0, 4], x2 ∈ [0, 2]}.

The region is therefore positively invariant.

Example 13. Consider the logistic growth model

ẋ = x(1− x),

which has fixed points in 0 and 1.
Take the function V(x) = x2, defined in a neighbourhood of 0. It is

positive definite, and

V̇(x) =
∂V
∂x

ẋ = 2x2(1− x)

is positive definite near x = 0. The fixed point in 0 is unstable.
Now consider the function V(x) = (1− x)2 in a neighbourhood of 1. It

is again positive definite, and

V̇(x) =
∂V
∂x

ẋ = −2x(1− x)2,

which is negative definite around x = 1. This is therefore an asymptotically
stable fixed point.

Finally, consider an interval M := [0, b] for some b > 1. We know that
ẋ = 0 if x = 0, and ẋ < 0 if x = b, therefore the set M is positively
invariant (solutions cannot escape it). Consider V(x) = (1 − x)2 with
x ∈ M. We have V̇(x) = −2x(1− x)2, which is equal to 0 in x = 0
and x = 1. These are both fixed points and therefore are both positively
invariant. By the LaSalle invariance principle, we know that all x ∈ M
converge to one of these two fixed points for t→ ∞.

In fact, since we know that x = 0 is unstable, we can further specify that
all x ∈ M, except x = 0, converge to x = 1 for t→ ∞.
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LaSalle invariance principle can be further adapted to prove the
global asymptotic stability of an equilibrium as follows (and, in this
form, it goes once again under the name of Barbashin-Krasovskii
theorem)

♦ Theorem
Consider a continuously differentiable function V(x) that is posi-
tive definite and radially unbounded in Rn, such that V̇(x) is neg-
ative semidefinite in Rn. Let N be the set where V̇(x) = 0, and
suppose that the only positively invariant set in N is the isolated
equilibrium x̄. Then x̄ is GAS.

Stability criteria for discrete-time systems

The results of the previous section hold, with minimal changes, for
discrete-time systems. The main change is that the time-derivative
must be substituted with a finite time difference. The only remark-
able difference (remarkable at least in that we will meet it again in the
future) is in the eigenvalue criterion, which is modified as follows.

♦ Eigenvalue criterion for discrete-time nonlinear systems
A discrete-time linear system is asymptotically stable provided
that all eigenvalues of A are strictly within the unit circle, unstable
if at least one eigenvalue lies outside of the unit circle.

Example 14. Take the logistic map

x(t + 1) = 4x(1− x)

with equilibria in 0 and 3
4 . We have

J f (0) = [4− 8x]x=0 = 4,

and

J f

(
3
4

)
= [4− 8x]x= 3

4
= −2.

By the eigenvalue criterion, both equilibria are unstable. Notice, however,
that the system’s orbits are bounded within the interval [0, 1].
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Exercises

Exercise 10

Check that the Rosenzweig-MacArthur model

ẋ1 = x1

(
1− x1

8

)
− x1x2

1 + x1
,

ẋ2 = −x2 + 2
x1x2

1 + x1
,

has equilibria in (0, 0), (8, 0), and
(
1, 7

4
)
, and discuss the stability of

the equilibria.

Exercise 11

Use the Lyapunov theorem to prove that the equilibrium of

ẋ =

(
−2 0
1 −1

)

is GAS

Exercise 12

Find the equilibria of

ẋ = −x3 + x4

and discuss their stability using any one of the criteria seen in this
chapter.

* Exercise 13

Use the LaSalle invariance principle and Lyapunov theorem to
determine the stability of the origin in the following system, and to
determine a region of initial conditions that converge to the origin:

ẋ1 = x1(x2
1 − x2

2 − 1),

ẋ2 = x2(x2
2 + 3x2

1 − 1).

Answer of exercise 13

Let us start by studying the stability of the origin, using the Lya-
punov theorem. As usual, lacking any better clue, we should start
looking for V(x) from the simplest quadratic functions. Let us take
for instance the candidate function V(x) = x2

1 + x2
2. We have

V̇ = 2x2
1(x2

1 − x2
2 − 1) + 2x2

2(x2
2 + 3x2

1 − 1)

= 2x4
1 + 2x4

2 + 4x2
1x2

2 − 2x2
1 − 2x2

2

= 2((x2
1 + x2

2)
2 − (x2

1 + x2
2)).

This is a negative definite function near the origin since the linear
term dominates for any x such that x2

1 + x2
2 < 1. The equilibrium is

therefore asymptotically stable.
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LaSalle invariance principle now requires finding a positively in-
variant set M, and given that we have already determined a quadratic
V(x) whose time derivative is negative definite near the origin, we
may try to construct M as a sublevel set of V(x). Our choice of M
can be any circle

M := {(x1, x2) : V(x) ≤ ρ < 1}

for some ρ > 0. We have that M is compact and V̇(x) ≤ 0 in all of
M, so M is positively invariant. Furthermore, the only point where
V̇ = 0 is the origin. Therefore, by the LaSalle invariance principle,
all x ∈ M converge to 0.

* Exercise 14

Consider once again the Rosenzweig-MacArthur model

ẋ1 = x1

(
1− x1

8

)
− x1x2

1 + x1
,

ẋ2 = −x2 + 2
x1x2

1 + x1
,

and the equilibria that we found in Exercise 10. Prove that the three
equilibria are enclosed in a compact, positively invariant region.

Exercise 15

Consider the system

ẋ1 = (x2
1 − 1)(2x1 + x2),

ẋ2 = −x2.

1. Prove that the set {x : −1 ≤ x1 ≤ 1,−c ≤ x2 ≤ c} for arbitrary
c > 0 is positively invariant.

2. Compute all equilibria of the system

3. Using the LaSalle invariance principle and the function V =

x2
2, discuss the behaviour of x(t) for t→ ∞ for all x(0) ∈ M.

Answer of exercise 15

1. Set M is the polytope {x : −1 ≤ x1 ≤ 1,−c ≤ x2 ≤ c}. To
prove that it is invariant, we should show that on all boundaries
the vector field points within M. In general, we can do this by
defining each portion of the boundary of M as the level set of a
linear function g(x) : Rn → R whose gradient points outside of
M. Then the invariance condition becomes ġ(x) = ∂g

∂x f (x) ≤ 0.

Take for instance g(x) := −x1 − 1, for the left boundary. We have

∂g
∂x

f (x) = (−1, 0) f (x)|x1=−1 = 0.

The same happens on the boundary x1 = −1, mutatis mutandis. If
we now take g := x2 − c (for the boundary x2 = c), we have

∂g
∂x

f (x) = (0, 1) f (x)|x2=c = −c < 0,



equilibria and fixed points 35

and similarly for the fourth boundary segment. Therefore, M is
invariant.

2. f (x) = 0 for x1 ∈ {−1, 0, 1}, x2 = 0.

3. We already proved that M is positively invariant, and we have
V̇ = ∂V

∂x f (x) = 2x2 ẋ2 = −2x2
2. It is negative semidefinite, with

V̇ = 0 in {x : x1 ∈ [−1, 1], x2 = 0} (remember that we are only
considering the set M now.)

By the invariance principle, all x(0) ∈ M converge to this set as
t → ∞. If we further investigate the stability of the 3 equilibria
contained in this set, we find that the two equilibria in x1 = ±1
are unstable, while the one in x1 = 0 is stable. Therefore, all
x(0) ∈ M except those with x1(0) = ±1 converge to (0, 0).

Exercise 16

Consider the system

ẋ1 = −2x1 + x2 − x2
1x2

2,

ẋ2 = x1 − x2.

1. Prove that all initial conditions in the box x1 ∈ [0, 10], x2 ∈
[0, 10] converge to the origin.

2. Prove that the origin is not GAS.

Exercise 17

Prove that the continuous-time system

ẋ1 = x1x2 − x1x2
2

ẋ2 = −x2
1 − x2

has a globally asymptotically stable equilibrium at the origin.

Exercise 18

By graphical inspection, determine the equilibria of the tent map

x(t + 1) =

µx(t), x(t) ≤ 0.5,

µ(1− x(t)), x(t) > 0.5,

and their stability, as µ changes between 0.5 and 2
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Tent map with µ = 2 and with µ = 0.5

Exercise 19

By graphical inspection, determine the equilibria of the following
function, seen as the vector field of a continuous-time system, and
their stability. Discuss how the phase portrait changes as f (x) is
shifted up or down.

−2 −1 0 1 2
−1

−0.5

0

0.5

1

x

ẋ



Phase portrait near an equilibrium or a fixed point

Keywords: Hyperbolic equilibria, node, focus, saddle, nullclines, Poincaré index.

Geometry of the orbits near an equilibrium

Much of what we learn in this course regards the representation and
the analysis of the qualitative features of orbits in the state space,
that is, the qualitative study of the phase portrait:

■ Definition: phase portrait
The phase portrait is the set of all the orbits of a dynamical system

Let us consider, for the moment, the neighbourhood of an equilib-
rium. Our attention so far has been directed towards the asymptotic
behaviour of orbits near an equilibrium: does it approach the equi-
librium or not? For a more complete understanding of the behaviour
of a system near its equilibria, we may want to investigate not just the
limit t → ∞, but the behaviour, that is, the shape of the orbits for all
t ≥ 0. This means studying the phase portrait near the equilibrium.

We can start our investigation by looking at some particular orbits,
which are defined by the eigenvectors of the equilibrium.

An invariant space is simply an invari-
ant set that is also a vector space, that
is, it is closed with respect to addition
and multiplication by a scalar.

⋆ Every real eigenvector of a linear continuous-time [discrete-time]
system defines a one-dimensional invariant space through the
equilibrium [fixed point].

The above property is easily proved: take an initial condition x
that is an eigenvector. In this case

ẋ = Ax = λx

specifies a straight orbit moving in the direction of x, and there-
fore entirely contained in the the one-dimensional space defined by
the eigenvector. Obviously enough, initial conditions in this space
approach the equilibrium along a straight line if the eigenvalue is
negative or depart from it if the eigenvalue is positive.

Note that the same conclusion holds for a discrete-time system:

x(t + 1) = Ax(t) = λx(t).
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⋆ The real and imaginary parts of a pair of complex eigenvec-
tors of a linear continuous or discrete-time system define a two-
dimensional invariant space through the equilibrium

The above property is slightly more complex to deduce. We can
first notice that, given eigenvectors α ± iβ and the corresponding
eigenvalues a± ib, we have

A((α + iβ) + (α− iβ)) = 2αa− 2βb

and
A((α + iβ)− (α− iβ)) = i(2αb + 2βa),

which we can simplify into

Aα = αa− βb

and
Aβ = αb + βa.

This means that, if an initial condition x can be written as a weighted
sum of α and β, then ẋ = Ax is itself a weighted sum of α and β. The
space defined by the vectors α and β is therefore invariant, and orbits
approach or depart from the equilibrium depending on the stability
of the two eigenvalues. Once again, the same holds for discrete-time
dynamics.

We have thus seen how eigenvalues of linear systems identify in-
variant subspaces through equilibria and fixed points. It would be
interesting if a similar property held at equilibria and fixed points
of nonlinear systems. This is true, up to a point: in a nonlinear sys-
tem, the mentioned spaces become manifolds (curved lines or sur-
faces) and only exist locally around the equilibrium. These limita-
tions notwithstanding, much of the geometry of the orbits near an
equilibrium or fixed point of a nonlinear system can be described
through a careful analysis of its eigenvalues and eigenvectors.

Besides the above classification, in 2D systems, we have a richer
terminology to define equilibria with different-looking phase por-
traits.

■ Definition: Types of continuous-time hyperbolic equilibria
A hyperbolic equilibrium of a planar system with

• two real negative eigenvalues is called a stable node,

• two real positive eigenvalues is called an unstable node,

• one positive and one negative eigenvalue is called an saddle,

• a pair of complex eigenvalues is called a focus (stable or unsta-
ble, depending on the real parts).
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Can you tell the eigenvectors in each
of these phase portraits? And can you
sketch the phase portrait near the sta-

ble node with Jacobian
(−1 1

0 −1

)
?

(note that it has only one eigenvector)

The above classification only considers hyperbolic equilibria, and di-
agonalizable matrices (that is, matrices whose eigenvalues have the
same geometric and algebraic multiplicity). In the cases of nondi-
agonalizable matrices, the portraits are slightly different due to the
lack of one of the two invariant subspaces. The cases of nonhyper-
bolic equilibria instead are more fundamentally different and require
more careful analysis to decide the geometry of nearby orbits in the
invariant set correspondent to the nonhyperbolic eigenvalues. We
will understand more of these cases in the coming chapters.

In dimensions higher than 2 the same terminology is sometimes
used to describe the local appearance of the phase portrait, but terms
are somewhat mixed when subspaces of different nature coexist. The
most common notation in this case is to call

• node: a hyperbolic equilibrium whose eigenvalues are all real and
of the same sign

• focus: a hyperbolic equilibrium with at least two complex conju-
gate eigenvalues, and whose eigenvalues are all in the same side
of the imaginary axis

• saddle-focus: a hyperbolic equilibrium with at least two complex-
conjugate eigenvalues, and with eigenvalues on both sides of the
imaginary axis

The equivalent definitions in discrete time are the following.
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■ Definition: Types of discrete-time hyperbolic fixed points
A hyperbolic fixed point of a planar system with

• real eigenvalues in the interval [0, 1) is called a stable node,

• real eigenvalues in the interval (1, ∞) is called an unstable node,

• one eigenvalue in [0, 1) and one in (1, ∞) is called a saddle,

• eigenvalues anywhere else in the complex plane, except on the
unit circle, is called a focus.

With the above terminology, we can now rigorously classify the
types of hyperbolic equilibria and fixed points in planar continuous
and discrete-time systems: given their type and eigenvectors, we can
easily sketch the geometry of the orbits in their neighbourhood.

Example 15. Let us sketch the phase portrait of

ẋ =

(
−1 1
1 1

)
x.

Its eigenvalues solve

λ2 − 2 = 0⇒ λ = ±
√

2.

The equilibrium is therefore a saddle. We can find the eigenvectors by solv-
ing

(
−1 1
1 1

)(
v1

v2

)
=
√

2

(
v1

v2

)
⇒ v2 = v1

(
1 +
√

2
)
⇒ v =

(
1

1 +
√

2

)

and

(
−1 1
1 1

)(
v1

v2

)
= −
√

2

(
v1

v2

)
⇒ v1 = −v2

(
1 +
√

2
)
⇒ v =

(
−1−

√
2

1

)
.

The system has two orthogonal eigenvectors, one, unstable, in the first and
third quadrants, and the other one, stable, in the second and fourth quad-
rants.
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Planar systems present an additional advantage, other than hav-
ing a small and well-defined set of types of equilibria or fixed points.
Since the vector field f (x) has values in the plane, the solutions of
fi(x) = 0 (or fi(x) = xi, for discrete-time systems) form a set of
curves in the plane, which one can easily sketch and use to un-
derstand a systems’s behaviour. These curves are known as null-
clines. They prove particularly useful in continuous-time systems,
where the fact that orbits cannot cross each other makes the anal-
ysis through nullclines particularly powerful. For this reason, we
discuss here their usage only in the context of continuous-time sys-
tems, even though an extension to the discrete-time domain would
be technically simple.

■ Definition: Nullclines
The nullclines of a 2-dimensional vector field f (x) are the curves
defined by the two equations

fi(x) = 0

Example 16. Let us compute the nullclines of the linear system we studied
before:

ẋ =

(
−1 1
1 1

)
x.

The x1 nullcline solves

−x1 + x2 = 0⇒ x1 = x2.



42 nonlinear dynamics

The x2 nullcline solves

x1 + x2 = 0⇒ x1 = −x2.

We can use these to help us sketch the phase portrait. Along the x1 nullcline
the flow lines have a vertical tangent, along the x2 one they have a horizontal
tangent.
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Example 17 (Phase portrait of a prey-predator model). Let us find the
equilibria of the prey-predator model

ẋ1 = x1(1−
x1

4
)− x1x2,

ẋ2 = x1x2 − x2.

using nullclines.
The x1 nullclines are x1 = 0 and x1 = 4− 4x2; the x2 nullclines are

x2 = 0 and x1 = 1. We have equilibria at each intersection of an x1

nullcline with an x2 nullcline, therefore in (0, 0), (4, 0), and
(
1, 3

4
)
.

To sketch the phase portrait near the three equilibria we can study their
linearization. We have

J f (x) =

(
1− x1

2 − x2 −x1

x2 x1 − 1

)
,

therefore

J f (0, 0) =

(
1 0
0 −1

)
, J f (4, 0) =

(
−1 −4
0 3

)
, J f

(
1,

3
4

)
=

(
− 1

4 −1
3
4 0

)
.

We see that (0, 0) and (4, 0) are saddles, while
(
1, 3

4
)

is a stable focus(it has
negative trace and positive determinant, and tr2 − 4 det < 0, that is, the
discriminant is negative).

Let us now sketch the global phase portrait of the system
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Reasoning on the nullclines, we can now imagine what would happen if,
for example, the carrying capacity, equal to 4 in the equation of ẋ1, was to
decrease. The only nullcline affected by this change would be

x1 = k− kx2

(the slanted blue line in the plot). As k is reduced, the slope of the line
increases (while the line keeps crossing the x2 axis at 1), and the focus
equilibrium approaches the rightmost saddle. When k becomes less than 1,
we expect the two equilibria to collide. At this value, the strictly positive
equilibrium crosses to the fourth quadrant, and prey and predator can no
longer coexist.

Poincaré index theory

We have just seen how the uniqueness of orbits (the Picard-Lindelöf
theorem) in a planar continuous time system bears as a consequence
a large set of constraints on how orbits can move about the phase
space. This is why so much about the phase portrait of a continuous-
time planar system can be understood by studying its nullclines. An
even stronger impression of the consequences of uniqueness comes
from the Poincaré index theory, which is based on the following ob-
servations.
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■ Definition: Poincaré index
Given a planar non-intersecting, oriented, and closed curve L and
a planar continuous vector field f , the index IL( f ) is the inte-
ger number of rotations of the vector field f (x) as x traverses the
curve, counted positive for rotations in the same direction of rota-
tion as the curve L.

A planar non-intersecting curve is
sometimes called a Jordan curve

Here rotations are counted with a sign,
positive in the direction of rotation of
the curve L.

♦ Invariance of the Poincaré index
If the curve is deformed without crossing equilibria, its Poincaré
index does not change.

♦ Index of a sum of curves
The index of a sum of curves is the sum of the indices of the curves

Based on the above theorems, we can now imagine taking a curve
that encloses exactly one equilibrium, and shrinking it until it encir-
cles the equilibrium tightly, that is, until it lies within a vector field
that is well approximated by the linearisation around the equilib-
rium.

Example 18. Let us look at the indices of a Jordan curve surrounding a
saddle, a node, and a focus
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It is now easy to conclude that

The index is independent of the
stability of the node!

♦ Theorem
The index of a curve that encloses

• exactly one node or focus is 1,

• exactly one saddle is −1,

• no equilibria is 0.

We can, with little abuse of notation, say that the index of a node
or focus is 1, and that of a saddle is −1. We can now complete the
above list as follows
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♦ Theorem
The index of a curve that encloses a set of nodes, foci, and saddles,
is N −M, where N is the number of nodes and foci, and M is the
number of saddles.

Considering that the index of a periodic orbit is +1 (easy to check),
we can also state the following

♦ Theorem
Every periodic orbit in the plane must enclose a set of equilibria
whose indices sum exactly to +1.

Example 19. A control system is designed so that

ẋ = f (x, u), x ∈ R2,

u = g(x),

with f and g continuous, has a GAS equilibrium at x = 0. The system is
then perturbed, becoming

ẋ = f (x, u) + h(x),

u = g(x),

with h(x) continuous and ∥h(x)∥
∥ f (x,u(x))∥ < ρ < 1 for ∥x∥ > C, for some

constant C. Let us discuss what are some possible and impossible scenarios
for the perturbed system.

First, let us take a closed curve L around the origin, so that ∥x∥ > C for
all x ∈ L. By our assumption on the relative sizes of h(x) and f (x, u(x)),
the curve must have the same index with and without the perturbation.
Therefore the curve must have an index 1, since it encloses exactly 1 equi-
librium in the unperturbed case. This imposes some surprisingly tight re-
strictions on the effects of h(x), even though we are not assuming anything
about the size of h(x) near the origin.
A new stable equilibrium appears near x = 0. This is not possible,
since the total index of the equilibria within ρ would become 2.
A new pair of equilibria, a saddle and a stable or unstable node,
appear near x = 0. This is possible since the total index of the equilibria
within ρ would remain unchanged.
The equilibrium changes stability This is possible since its index is not
a function of its stability.
The equilibrium disappears This is not possible, since the index of ρ

would become 0.

Exercises

Exercise 20

A planar, parameter-dependent system

ẋ = f (x, p)
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has a single stable equilibrium x̄ and no periodic orbits in a region
enclosed by the curve L. Suppose that, as f changes continuously,
IL( f ) remains constant and no other equilibrium crosses L. Can we
say that

• the equilibrium x̄ may disappear,

• a new saddle equilibrium may appear inside L,

• a new focus equilibrium may appear inside L,

• a new pair of equilibria, a node and a saddle, may appear inside
L,

• a periodic orbit may appear inside L,

• a pair of periodic orbits may appear inside L.

Exercise 21

Sketch the phase portrait of

ẋ =

(
−1 1
3 1

)
x,

highlighting the eigenvectors of the equilibrium and the direction of
motion of the vector field in each of the regions separated by the
eigenvectors.

Exercise 22

The phase portrait below shows the neighbourhood of the only
equilibrium in the system

ẋ1 = 1− x1 + x1x2 + x3
2,

ẋ2 = x1 + x2.
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Explain why the system cannot have a periodic orbit.

Exercise 23

Sketch the nullclines of

ẋ1 = x1x2 + x2
1,

ẋ2 = −x1 + x2 + 1,

and study the type and stability of the equilibria.

Exercise 24

Sketch the nullclines of

ẋ1 = x2(x3
1 − x1),

ẋ2 = −x1 + x2
2,

identify the equilibria and their type, and sketch qualitatively the
direction of motion of the orbits in each of the regions of the phase
space separated by the nullclines.

Answer of exercise 24

The nullclines solve fi(x) = 0. From f1 we obtain the straight lines
x1 = 0, x1 = ±1, x2 = 0. From f2 we have x1 = x2

2. Equilibria lie
at the intersections of a nullcline of f1 with one of f2, at (0, 0), (1, 1),
and (1,−1). The Jacobians are

J f (0, 0) =

(
0 0
−1 0

)
,

J f (1, 1) =

(
2 0
−1 2

)
,
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and

J f (1,−1) =

(
−2 0
−1 −2

)
.

Therefore the first equilibrium is nonhyperbolic (we could tell by
the fact that it lies at a nontransversal intersection of two nullclines),
while the other two are respectively an unstable node and a stable
node.

To sketch qualitatively the direction of motion of the orbits, it is
sufficient to choose any one region and determine the sign of ẋ1 and
ẋ2 within the region. Then, whenever we cross a nullcline that is a
simple root of f1 or f2 the corresponding component of ẋ changes
sign.

The figure below portrays the nullclines, the qualitative direction
of motion (black arrows), and a computer-generated representation
of the phase portrait (grey arrows).

Exercise 25

Sketch the nullclines of

ẋ1 = x2
1 − x2 − 1,

ẋ2 = x2
1 + x2,

identify the equilibria and their type, and sketch qualitatively the
direction of motion of the orbits in each of the regions of the phase
space separated by the nullclines.

Exercise 26
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Sketch the phase portrait (nullclines, equilibria, qualitative direc-
tion of motion) of the following circuit

R = 2

L = 1

x1
C = 3x2 NLv

i

where the nonlinear element NL has characteristic

i = −v + v3.





Homeomorphisms and diffeomorphisms

Keywords: Homeomorphism, diffeomorphism, change of variables, topological conjugacy, inverse
function theorem, topological equivalence.

Mappings between flows

The functional form of a dynamical system is usually the result of
multiple modelling decisions. We know very well however that, for
example, the asymptotic stability of a linear equilibrium is a func-
tion of its eigenvalues, and these are independent of the choice of
variables with which we decide to describe the system. In other
words, many interesting properties of a dynamical system do not
depend on these modelling choices and may be easier to investigate
in some functional representations than in others. The tools to trans-
form a system from one representation to another, preserving these
properties, are called homeomorphisms and diffeomorphisms. We
now learn what they are, but we will elaborate on how to use them,
to transform continuous-time or discrete-time systems, in the next
chapter.

A bijective map is a one-to-one map,
that is, exactly one element of the
codomain corresponds to each element
of the domain.

■ Definition: Homeomorphism
A homeomorphism is a map that is bijective, continuous, and with
continuous inverse.

■ Definition: Topological conjugacy
Two flows ϕt(x) and ψt(y) are topologically conjugate if there ex-
ists a homeomorphism h : y = h(x) such that, for all x and for all
t,

h(ϕt(x)) = ψt(h(x)).

■ Definition: Local topological conjugacy
Two flows ϕt(x) and ψt(y) are locally topologically conjugate near
the states x̄ and ȳ if the flows, restricted to two neighbourhoods
of x̄ and ȳ respectively, are topologically conjugate.

We can see the conjugacy relation as the following commuting di-
agram: it states that the flow of x, which is ϕt(x), is mapped through
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h onto the flow of y with y = h(x), which is ψt(h(x)) = h(ϕt(x)).

Example 20. Consider the 1-dimensional system

ẋ = −x,

whose flow is
x(t) = e−tx(0),

and take y = h(x) := x3. This is a homeomorphism: it is bijective, contin-
uous, and its inverse x = 3

√
y is continuous, though it is not continuously

differentiable. If we map x onto y as y = h(x), and ϕt(x) onto ψt(y) as
ψt(y) = h(ϕt(x)), we obtain

ẋ = −x e−tx(0)

ẏ = −3y e−3ty(0)

ϕt

h h

ψt

The diagram commutes, and the two flows, of ẋ = −x and of ẏ = −3y, are
topologically conjugate. Notice that the equilibrium (which is unique, since
the systems are linear with a nonsingular matrix) has different eigenvalues
in the two systems.

Example 21. Take the discrete-time systems

y(t + 1) = ψ1(y) := y3(t)

−2 0 2

−2

0

2

y(t)

y(
t+

1)

and
x(t + 1) = ϕ1(x) := x3(t) + 3x2(t) + 3x(t),

−2 0 2

−2

0

2

x(t)

x(
t+

1)
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and the homeomorphism

y = h(x) = x + 1.

We have

ψ1(h(x)) = (x + 1)3 = (x3(t) + 3x2(t) + 3x(t)) + 1 = h(ϕ1(x)).

This implies that ψt(h(x)) = h(ϕt(x)), the two flows are therefore topolog-
ically conjugate.

We can easily deduce two interesting results from the definition
of topological conjugacy:

♦ Theorem
Topologically conjugate flows have the same number of equilibria
or fixed points, with the same stability.

♦ Theorem
Invariant sets are preserved through topological conjugacy.

This means that topologically conjugate flows behave essentially
the same. This is, clearly, a very strong requirement. We will see
in the next chapter that local topological conjugacy is a more useful
definition since by only focussing on a small neighbourhood of a
state (typically, of an equilibrium) we can prove much more general
results about the properties of the dynamics in that neighbourhood.

From the above examples, we may also notice that homeomor-
phisms h(x) between discrete-time systems with vector fields f1(y)
and f2(x) provide an explicit mapping between the vector fields, as
long as we can compute h−1:

f2(x) = h−1( f1(h(x))).

This means that f2 can be obtained explicitly if h and its inverse h−1

are known. It also implies as we see in the next example, that home-
omorphisms preserve the eigenvalues of the fixed points of discrete-
time flows.

Example 22. (Homeomorphisms and eigenvalues of fixed points) Consider
a system

x(t + 1) = f (x(t)),

and the homeomorphism x = h(y). We have

y(t + 1) = h−1 ( f (h(y))) .

Assume that x̄ = h(ȳ) is a fixed point. The Jacobian at the fixed point is[
∂

∂y
h−1( f (h(y)))

]
y=ȳ

=
[

Jh−1( f (h(y)))J f (h(y))Jh(y)
]

y=ȳ

f (h(ȳ))=h(ȳ)
= Jh−1(h(ȳ))J f (h(ȳ))Jh(ȳ).
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Now notice that matrices Jh−1(h(ȳ)) and Jh(ȳ) are inverses of each other,
since h−1(h(y)) = y and ∂

∂y
(
h−1(h(y))

)
= Jh−1(h(y))Jh(y) = ∂

∂y y = I.
Therefore, the matrix Jh−1(h(ȳ))J f (h(ȳ))Jh(ȳ) is similar to J f (x̄), and they
share the same eigenvalues.

We had seen previously that the same did not hold at the equilib-
rium of a continuous-time system.

♦ Theorem
Homeomorphisms preserve the eigenvalues of fixed points, but
not those of equilibria.

In other words, homeomorphisms appear to preserve more struc-
ture when applied to discrete-time flows, than when they are applied
to continuous time flows. We recover, on continuous-time systems,
the same behaviour that homeomorphisms have on discrete-time sys-
tems if we slightly tighten the requirements on the map h.

■ Definition: Diffeomorphism
A diffeomorphism is a map that is bijective, continuously differ-
entiable, with a continuously differentiable inverse.

Example 23 (Linear change of variables are diffeomorphisms). Con-
sider a linear system

ẋ = Ax + Bu,

and a similar system

ẏ = M−1 AMy + M−1Bu,

obtained through the change of variables

x = My,

with M nonsingular. The map My is continuous, its differential M is
continuous, and it has a continuously differentiable inverse. Therefore, it is
a diffeomorphism.

In other words, flows that are topolog-
ically conjugate through a diffeomor-
phism share equilibria (or fixed points)
with the same sets of eigenvalues.

♦ Theorem
Diffeomorphisms preserve the eigenvalues of equilibria and fixed
points.

Example 24. (Diffeomorphisms and eigenvalues of equilibria) Consider a
system

ẋ = f (x),

and the diffeomorphism x = h(y). We can write the system in the new
variables as

ẋ = Jh(y)ẏ = f (h(y)),
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therefore

ẏ = (Jh(y))
−1 f (h(y))

Assume that x̄ is an equilibrium, and ȳ is the corresponding equilibrium

The reason why a homeomorphism
does not provide an explicit mapping
between continuous-time flows is in
this equation: in general, Jh(y) and
(Jh(y))

−1 are not everywhere defined
unless we deal with diffeomorphisms.

in the y variables. The Jacobian at the equilibrium is[
∂

∂y

(
(Jh(y))

−1 f (h(y))
)]

y=ȳ

=

[
∂

∂y
(Jh(y))

−1 f (h(y)) + (Jh(y))
−1 J f (h(y))Jh(y)

]
y=ȳ

f (h(ȳ))=0
= (Jh(ȳ))

−1 J f (h(ȳ))Jh(ȳ).

The matrix (Jh(ȳ))
−1 J f (h(ȳ))Jh(ȳ) is similar to J f (x̄), therefore they share

the same eigenvalues.

Even though it is tempting to use this
result to prove that f is globally a
diffeomorphism simply by showing
that Jh(x) is nonsingular everywhere, a
few more assumptions are needed for
this. One form of the Hadamard-Levy
theorem, for instance, states that a
continuously differentiable function h
is a diffeomorphism from Rn → Rn

provided that Jh(x) is nonsingular for
all x, and ∥J−1

h (x)∥ < a + b∥x∥, for
some a, b > 0. See (Plastock, 1974) for
more equivalent conditions.

♦ Inverse function theorem
Consider the continuously differentiable map y = h(x). If Jh(x̄) is
nonsingular then, in a neighbourhood of ȳ = h(x̄), h is invertible
and h−1(y) is continuously differentiable.

The above theorem states that a continuously differentiable func-
tion g(x) is a diffeomorphism in a neighbourhood of x̄ provided that
the Jacobian Jg(x̄) is nonsingular. While constructing a global diffeo-
morphism is typically challenging, we will more often be satisfied
with diffeomorphisms defined in a neighbourhood of some special
state x̄, hence nonsingularity of the Jacobian is all we will need.

Definition of topological equivalence

Topological conjugacy, which we defined in the previous section, is a
very demanding relation: it means that every orbit of ϕt is mapped,
at each instant of time, onto an orbit of ψt. The following relation
is a little looser, in that it requires mapping of orbits onto orbits,
but it allows for time to be stretched at will, as long as direction is
preserved.

■ Definition: Topological equivalence
Two flows are topologically equivalent if there exists a homeomor-
phism mapping orbits of one onto orbits of the other, preserving
the direction of time.

Example 25. Consider the two scalar systems

ẋ = x2

and

ẏ = |y|.
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We have already encountered the first, and we know that its flow is

x(t) = ϕt(x) =


1

1
x(0)−t

, x(0) ̸= 0,

0, x(0) = 0.

Solutions converge to 0 from the left, if x(0) < 0, while they diverge in
finite time if x(0) > 0, or stay at 0 if x(0) = 0.

The flow of the second system, on the other hand, can be easily computed
by looking separately at the domains y < 0, y = 0, and y > 0:

y(t) = ψt(y) =


e−ty(0), y(0) < 0,

0, y(0) = 0,

ety(0), y(0) > 0.

Since the first flow is defined only on a time domain t ∈
[
0, 1

x(0)

)
when

y(0) > 0, there exists no homeomorphism such that

h(ϕt(x)) = ψt(h(x)), ∀t.

The two flows are not topologically conjugate. They are, however, topologi-
cally equivalent, and the homeomorphism mapping orbits to orbits is simply
the identity: y = x.

⋆ Discrete-time flows that are topologically equivalent are also topo-
logically conjugate.

This follows from the fact that time is discrete, so when mapping
a discrete-time system we don’t have the option of stretching it or
shrinking it.

■ Definition: Local topological equivalence
Two flows ϕt(x) and ψt(y) are locally topologically equivalent
near the states x̄ and ȳ if the flows, restricted to two neighbour-
hoods of x̄ and ȳ respectively, are topologically equivalent.

We need one more extension of the definition of topological equiv-
alence, that applies to flows that depend on parameters. Its use will
become apparent once we will meet bifurcations and their unfold-
ings as parametric systems.

■ Definition: Topological equivalence for parametric flows
Two flows ϕt(x, α) and ψt(y, β) in the parameters α and β are topo-
logically equivalent if there exists a homeomorphism β = b(α),
and ϕt(x, α) and ψt(y, b(α)) are topologically equivalent for all α.

In a nutshell, topological equivalence is extended to parametric
families of flows by asking that parameters be mapped through a
homeomorphism between the two families and that the two flows be
topologically equivalent for each parameter pair.
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Exercises

Exercise 27

Decide which of these maps are homeomorphisms or diffeomor-
phisms:

y =x2, x ∈ R;

y =

(
1 2
−1 1

)
x, x ∈ R2;

y =


√

x, x ≥ 0,

−√−x, x < 0,
, x ∈ R;

y =x + ex, x ∈ R (* this is a bit harder do discuss).

Exercise 28

Prove that the maps

x(t + 1) =

2x(t), x ≤ 0.5,

2(1− x(t)), x > 0.5

and
x(t + 1) = 4x(t)(1− x(t)),

defined for x ∈ [0, 1], are topologically conjugate with homeomor-
phism

h(x) := sin2
(πx

2

)
, x ∈ [0, 1].

Exercise 29

Consider the system

ẋ =

(
1 2
0 2

)
x +

(
x1x2

0

)
.

Define a diffeomorphism that diagonalizes the Jacobian of the equi-
librium in 0, and compute the vector field in the new variables.

Answer of exercise 29

The linear change of variables diagonalizing A will work. We start
by finding the eigenvectors of A:(

1 2
0 2

)
p = 1p⇒ p =

(
1
0

)

and (
1 2
0 2

)
p = 2p⇒ p =

(
2
1

)
.

We can thus diagonalize the system through the change of variables

y = Tx,
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with

T−1 =

(
1 2
0 1

)
.

We have

T =

(
1 −2
0 1

)
,

therefore

y1 = x1 − 2x2,

y2 = x2.

and

x1 = y1 + 2y2,

x2 = y2.

Using these in the original system, we obtain

ẏ = Jh(y)−1 f (h(y)) = T f (T−1y)

=

(
1 −2
0 1

)((
1 2
0 2

)(
1 2
0 1

)
y +

(
(y1 + 2y2)y2

0

))

=

(
1 0
0 2

)
y +

(
(y1 + 2y2)y2

0

)

** Exercise 30 Node to focus homeomorphism

Prove that the linear node

ẋ =

(
−1 0
0 −1

)
x

and the linear focus

ẋ =

(
−1 −1
1 −1

)
x

are topologically conjugate.

Answer of exercise 30

The orbits of the linear node are straight lines approaching the
origin as e−t. The linear focus instead has eigenvalues −1 ± i; its
orbits spiral towards the origin, with ρ(t) = e−tρ(0), θ(t) = t + θ(0).

We can map the orbits of the node onto those of the focus by
twisting them around the origin. Let us call (ρn, θn) the coordinates
of the node system, and (ρ f , θ f ) those of the focus system, and let us
fix the circle ρ = 1 as the set of initial conditions for the orbits so that
ρ(0) = 1. We have

ρn(t) = e−t,

θn(t) = θn(0),
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for the node system, and

ρ f (t) = e−t,

θ f (t) = θ f (0) + t,

for the focus system. To twist the orbit of the first system onto those
of the second, it is sufficient to rotate any state (ρ, θ) by an angle
− ln(ρ), thus the map

(
ρ f

θ f

)
= h

(
ρn

θn

)
:=

(
ρn,

θn − ln(ρn)

)

takes orbits of one system onto orbits of the other. The map is invert-
ible and can be made continuous in a neighbourhood of the origin
by defining

θ f = θc when ρc = 0.

It is therefore a homeomorphism.
Having constructed a homeomorphism between the orbits of the

two systems, we may conclude that the flows are topologically equiv-
alent, while the exercise asked for topological conjugacy. This is,
however, guaranteed by the fact that the time domains over which
the flows of the two systems are defined are the same. Let us ver-
ify this by explicitly testing the relation h(ϕt(xn)) = ψt(h(xn)). Let

us define xn :=

(
ρn

θn

)
, x f :=

(
ρ f

θ f

)
, ϕt(xn) :=

(
e−tρn

θn

)
, ψt(x f ) :=(

e−tρ f

θ f + t

)
.

We have

h(ϕt(xn)) =

(
e−tρn

θn − ln
(
e−tρn

)) =

(
e−tρn

θn + t− ln (ρn)

)

and

ψt(h(xn)) =

(
e−tρn

θn − ln (ρn) + t

)
.

This proves that the homeomorphism h indeed establishes a topolog-
ical conjugacy between the flows.

Exercise 31

Decide which of the following scalar continuous-time systems have
topologically equivalent flows:
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1.

−2 0 2

−2

0

2

x

f(
x)

2.

−2 0 2

−2

0

2

x

f(
x)

3.

−2 0 2

−2

0

2

x

f(
x)

4.

−2 0 2

−2

0

2

x

f(
x)

5.

−2 0 2

−2

0

2

x

f(
x)

6.

−2 0 2

−2

0

2

x
f(

x)

7.

−2 0 2

−2

0

2

x

f(
x)

8.

−2 0 2

−2

0

2

x

f(
x)
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Keywords: Hartman-Großman theorems, centre manifold theorem, stable unstable and centre mani-
folds, normal form, Poincaré normal form, feedback linearisation normal form

Invariant manifolds near an equilibrium

In the previous chapter, we established relations between flows of
discrete or continuous-time dynamical systems. The concepts of
topological conjugacy and topological equivalence are the bases on
which the theory of normal forms is constructed. This is the theory
dealing with how a system can be transformed into an equivalent
but simpler form (in some sense that, of course, depends on the ap-
plication), and with how systems can be classified according to their
topological properties.

In this chapter, to keep the discussion simple, we break the sym-
metry that we have preserved so far between discrete and continuous
time, and present the theory only for continuous-time systems, for
the sake of simplicity. A similar theory can of course be constructed
for discrete-time systems, through predictable changes in the alge-
bra.

The theorem states that ϕt is topologi-
cally conjugate to its linearisation, but
in general it is not diffeomorphic to it.

♦ Hartman-Großman theorem
If x̄ is a hyperbolic equilibrium of a continuously differentiable
vector field with flow ϕt(x), then ϕt(x) is locally topologically con-
jugate to its linearisation at x̄.

Example 26. Consider the system

ẋ =

(
−1 −1
−1 1

)
x +

(
1 + x2

−1

)
u +

(
x2

1
2x1x2 + x2

2

)
.

When u = 0, the system has an equilibrium in 0 with eigenvalues ±
√

2 (it
is a saddle). We stabilize the system at u = 0, x = 0 with a static state
feedback

u = 2x2.

The linearised controlled system is

ẋ =

(
−1 −1
−1 1

)
x +

(
1
−1

)(
0 2

)
x =

(
−1 1
−1 −1

)
x,
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which has eigenvalues −1± i. The Hartman-Großman theorem guarantees
that the nonlinear system is topologically conjugate to the linear one near
the origin, therefore there exists a neighbourhood of 0 where orbits approach
0. Outside of this neighbourhood, however, dynamics may be very different
from what we would expect.

Here is the phase portrait of the controlled nonlinear system around the
origin,

-2 -1 0 1 2

-2

-1

0

1

2

x1

x2

and a zoom-in of the nonlinear flow (on the left), and of the linearised flow
(on the right)

-0.2 -0.1 0.0 0.1 0.2

-0.2

-0.1

0.0

0.1

0.2

x1

x2

-0.2 -0.1 0.0 0.1 0.2

-0.2

-0.1

0.0

0.1

0.2

x1

x2

The Hartman-Großman theorem thus justifies the use of lineari-
sation to study the dynamics of hyperbolic equilibria and to design
controllers. However, it does not give any information regarding
non-hyperbolic equilibria. For this kind of information, we must use
a different tool.
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♦ Centre manifold theorem
Consider a continuously differentiable vector field f (x) near the
equilibrium x̄. Consider the eigenspaces Es, Eu, Ec spanned by the
stable, unstable, and zero eigenvectors of J f (x̄). In a neighbour-
hood of x̄ there exist three continuously differentiable invariant
manifolds, respectively tangent to Es, Eu, and Ec at x̄.

In this statement, a continuously
differentiable invariant manifold is
an invariant subset of Rn with the
shape of a surface whose tangent space
changes continuously.

By analogy with their linear counterpart, let us denote by Es, Eu,
Ec the above-mentioned manifolds.

■ Definition: Stable, unstable, and centre manifold
The three manifolds Es, Eu, and Ec are called the stable, unstable,
and centre manifold, respectively.

Example 27. The phase portrait below is of the system

ẋ1 = x1 −
x3

1
2

+
x2

5
,

ẋ2 =
x5

1
10
− x2.

It has a saddle in (0, 0), and two stable nodes. The unstable manifold of
the saddle, in blue, converges to the two nodes. The stable manifold, in red,
marks the boundary between the orbit converging to one or the other node.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x1

x2

Stable manifolds of saddles are some-
times called separatrices, as they sepa-
rate regions of the state space whose
orbit have different long-term be-
haviour, as in this case.
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♦ Nonhyperbolic Hartman-Großman
Let x̄ be a nonhyperbolic equilibrium of a continuously differen-
tiable vector field f (x). The flow of f (x) is locally topologically
conjugate to the flow of a system

ẋ = Cx + F(x, y, z)

ẏ = Sy

ż = Uz

where C, S and U are matrices whose eigenvalues have zero, neg-
ative and positive real parts, respectively, the block-diagonal ma-
trix with blocks C, S and U is similar to J f (x̄), and F is a nonlinear
function.
The three sets of equations define the dynamics in the manifolds
Ec, Es, and Eu, respectively

Note that, unlike what is stated in the (hyperbolic) Hartman-
Großman theorem, here the system is not conjugate to a linear sys-
tem. The dynamics in the centre manifold is not equivalent to a
linear dynamics.

Example 28. Consider the control system

ẋ =

(
1 0
−1 0

)
x +

(
1
0

)
u +

(
0
x3

2

)
,

y = x1.

We design a feedback control u = −2y = −2x1, obtaining the closed loop
dynamics

ẋ =

(
−1 0
−1 0

)
x +

(
0
x3

2

)
.

The system has an equilibrium at x = 0, with an eigenvalue −1, corre-
sponding to eigenvector (1, 1), and an eigenvalue 0 with eigenvector (0, 1).
From the analysis of the linearised dynamics, we would expect the origin to
be Lyapunov stable, with small perturbations converging to the null eigen-
vector, which coincides with the x2 axis. This may be good enough for our
purpose... if it were true.

The Hartman-Großman theorem tells us that the dynamics along the
eigenvector (1, 1) will indeed resemble those of the linearisation, at least
near the origin. This is not true, however, along the null eigenvector.

The nonlinear term x3
2 in the equation of ẋ2 destabilizes the x2 axis:

|ẋ2| > 0, ∀x1 = 0, x2 ̸= 0.

In the nonlinear system, the origin therefore behaves like a saddle. We see
here the phase portrait of the nonlinear system.
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An equilibrium such as this one, which
has a stable and an unstable direction,
despite not having both a stable and
an unstable manifold, is called a
topological saddle

Example 29 (The SIR model and the epidemic threshold). The follow-
ing model, known as the SIR model (Kermack and McKendrick, 1927), is
a simplistic representation of a rapidly spreading infectious disease. It is
frequently used as the basis to develop more articulate, predictive models of
diseases such as influenza or SARS-COV-2.

Ṡ = −aIS,

İ = aIS− bI,

Ṙ = bI.

The variables S, I, and R represent the fraction of individuals in a given
population that are susceptible, infected, or removed (recovered or dead) at
a given time instant, while the positive parameters a and b represent the
transmission and removal rates. The model ignores the flows of newborns
and dead by causes other than the disease, which is the reason why it is only
used in this form to study diseases that spread over a faster time scale than
natural birth and death. In the model, S(0), I(0) and R(0) are assumed to
sum to 1 (to make up the entirety of the population), and it is easy to verify
that the simplex

{(S, I, R) : S + I + R = 1, S ≥ 0, I ≥ 0, R ≥ 0} (1)

is positively invariant.

S

I

R
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Figure 4: Evolution of S, I, and R with
S(0) = 0.99, I(0) = 0.01, R(0) = 0,
a = 2.25/7, b = 1/7.

All equilibria of the model lie in the set {(S, I, R) : I = 0}. Let us study
the stability of these equilibria, and to simplify our task let us ignore the
third equation (note how the first two equations are independent of R, so
they form a closed system).

We have

J f (S, I = 0) =

(
0 −aS
0 aS− b

)
.
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The matrix has a null eigenvalue, with eigenvector (1, 0), and a second
eigenvalue aS − b, with eigenvector (−aS, aS − b). We can thus divide
equilibria into 3 groups:

1. equilibria with aS− b > 0, which have an unstable eigenvalue,

2. one equilibrium with aS− b = 0, which has a second null eigenvalue,

3. equilibria with aS− b < 0, which have a stable eigenvalue.

Let us study the nonlinear dynamics of equilibria in each group. Equilibria
in group 1 have a centre manifold, locally contained in the set {(S, I) :
I = 0}, and an unstable manifold. No orbit can reach these equilibria
forward in time. The equilibrium in group 2 has a centre manifold and no
stable or unstable manifold. Notice also how the matrix in this case is not
diagonalizable (the centre eigenspace is 1-dimensional). In this case, the
Hartman-Großman theorem does not provide any additional information,
and the full 2-dimensional dynamics describes the behaviour in the centre
manifold. We can however note that the equilibrium (call it (S∞, I∞)) can
only be reached from states S : S > S∞, since S is strictly decreasing. The
dynamics of I near the equilibrium is thus equal to

İ = aIS− bI = aI(S− S∞) + (aS∞ − b)︸ ︷︷ ︸
=0

I = aI(S− S∞) > 0.

Orbits within the centre manifold cannot reach the equilibrium (S∞, I∞ =

0). Finally, equilibria in group 3 have a stable manifold, and can therefore
be reached by orbits within the simplex (1). All in all, we see that all
orbits of the system converge to equilibria with state S : aS − b < 0,
that is, with S < b

a . The value a
b , also known as R0, is called the basic

reproduction number, and 1/R0 is called the epidemic threshold. If R0 >

1 then the state (S = 1, I = R = 0) is unstable, a small perturbation
of the infected compartment will trigger an epidemic which will not stop
before S has reached a limiting value S∞ ≤ 1

R0
. If R0 < 1 then the state

(S = 1, I = R = 0) is stable: a small number of infected individuals cannot
trigger an epidemic.

The nonhyperbolic Hartman-Großman theorem states that, near
any nonhyperbolic equilibrium, dynamics can be partitioned into
three sets corresponding to the three manifolds. Dynamics in the
centre manifold, unlike dynamics in the other two manifolds, are
completely decided by higher-order terms. However, in most cases,
we will still observe convergence or divergence from the equilibrium,
even in the centre manifold. That is, in most cases if we ignore the
time-dependence of the orbits (and only focus on topological equiv-
alence) we can expect to see dynamics qualitatively similar to those
that we know for hyperbolic equilibria.

⋆ Planar nonhyperbolic equilibria that are locally topologically
equivalent to a node, focus, or saddle, are called topological
nodes, foci, and saddles.
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An important consequence of the centre manifold and the Hartman-
Großman theorem is that, when we need to study a nonhyperbolic
equilibrium, we can focus on the analysis of the reduced model

ẋ = Cx + F(x, y, z),

since the dynamics in the stable and unstable manifolds are fully
defined by the corresponding, hyperbolic eigenvalues and eigenvec-
tors. This is good news, since in most cases of interest the centre
manifold is of dimension 1 or 2, depending on whether a single real
eigenvalue, or a pair of complex conjugate eigenvalues, are crossing
the imaginary axis, and independently of the order of the system we
are studying.

In light of this observation, one may be interested in seeing whether
the dynamics of most nonhyperbolic equilibria in their centre man-
ifold can be captured and classified by some sort of standardized
equations. To some extent, this is indeed possible, through the use
of normal forms, which we start to acquaint with in the next section.

Normal forms

A normal form of a vector field is a special functional form, in which
the vector field can be transformed through a suitable diffeomor-
phism (that is, by a nonlinear change of variables). This is of course
a very loose definition, but it is meant to be so, as normal forms
are many and designed for different purposes. We see next two Refer to (Murdock, 2003) for a thor-

ough discussion of normal forms
theory

families of normal forms that are frequently encountered in non-
linear dynamics and control, and we will encounter a third family
–topological normal forms– when we will talk about bifurcations.

To simplify the writing of our normal forms, we will use two com-
mon tools of differential geometry, the Lie derivative of scalar and
vector functions.

Note how this is the derivative of the
function g(x) in the direction of the
flow of f (x). We already encountered
it, for example in Lyapunov theorem,
where V̇(x) = L f V(x) = ∂V

∂x f (x).

■ Definition: Lie derivative of a scalar function
The Lie derivative of a scalar function g(x) with respect to vector
field f (x) is

L f g :=
∂g
∂x

f (x) = Jg(x) f (x).

The Lie derivative of a scalar function g with respect to vector field
f is the directional derivative of the function, with respect to the flow
of the vector field.

■ Definition: Lie bracket of vector functions
The Lie bracket of a vector functions g(x) and f (x) is

[ f , g] :=
∂g
∂x

f (x)− ∂ f
∂x

g(x) = Jg(x) f (x)− J f (x)g(x).
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With these tools we can start to address the first family of normal
forms: the Poincaré normal form. This is, loosely speaking, a vector
field representation that makes the system as close as possible to its
linearisation in a neighbourhood of one of its equilibria.

Consider a sufficiently differentiable vector field f (x) with an
equilibrium at 0. We want to find a coordinate change (hence a dif-
feomorphism) that transforms it as much as possible into its lineari-
sation J f (0)x.

We can start by writing the Taylor expansion of f (x):

ẋ = J f (0)x + f [2](x) + f [3](x) + . . . ,

where f [i] are homogeneous polynomials of degree i. We aim at
constructing the change of variables by eliminating the terms f [i]

one degree at a time. Let us consider, to begin with, a near-identity
change of variables

x = h(y) = y + ψ[2](y),

where ψ[2](y) is an arbitrary second-degree polynomial. Its inverse
is

To see this, in the scalar case, given
x = y + py2 consider the Taylor
expansion of the unknown inverse
function

h−1(x) = c1y + c2y2 + c3y3 + . . . .

Iteratively solving h(h−1(x)) = x we
find the coefficients of h−1: we have
c1 = 1 and c2 = −p, c3 = 2p2 . . .

y = x− ψ[2](x) + O(∥x∥3).

Differentiating both sides of the above equation in time, we obtain

ẏ = ẋ− Jψ[2](x)ẋ + O(∥x∥3)

= J f (0)x + f [2](x)− Jψ[2](x)J f (0)x + O(∥x∥3)

= J f (0)y + J f (0)ψ
[2](y) + f [2](y)− Jψ[2](y)J f (0)y + O(∥y∥3)

= J f (0)y + f [2](y)− [J f (0)y, ψ[2](y)] + O(∥y∥3).

Thus, we can eliminate all second-degree terms by choosing ψ[2] such
that

This is known as the homological
equation...

[J f (0)y, ψ[2](y)] = f [2](y).

The same formal computation can be repeated for higher-order terms.
We can see the above as a linear operator

...while this is the homological operator.
[J f (0)y, ·],

acting on the (finite-dimensional) space of second-degree homoge-
neous polynomials. In the case that J f (0) is diagonalizable, it can
be shown that the eigenvalues of the homological equation, seen as
a linear operator on the polynomials ψ, are integer multiples of the
quantity m1λ1 + . . .+mnλn−λi, where n is the dimension of the sys-
tem, λi are the eigenvalues of J f (0), mi are nonnegative integers, and
∑ mi = 2. It follows that the homological equation is a nonsingular
operator provided that the equation

m1λ1 + . . . + mnλn − λi = 0

has no solution in the variables mi. This is called a non-resonance
condition. Combinations of m1, . . . , mn that satisfy the equation cor-
responds monomials, of the form ym1

1 ym2
2 . . . ymn

n , that cannot be elim-
inated through the Poincaré normal form reduction. These are called
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resonant terms in the normal form. The condition for the existence of
resonant terms, which we have seen for the second-order terms, is
similar for terms of higher order.

We can easily prove the resonance
condition at second order for 1 and
2-dimensional systems. Start by
considering a 1-dimensional system.
The unknown polynomials ψ(y) = ay2

can be represented as the space of 1
dimensional vectors a ∈ R. Assuming
an equilibrium with Jacobian J f (0) =
λ, the homological operator is

(2λ− λ)ay2.

This can be seen as the linear operator
(2λ− λ) applied to the 1-dimensional
vector a, and its eigenvalue is nonzero
provided that 2λ− λ ̸= 0.

In a 2-dimensional system,
the unknown polynomials
ψ1(y) = a1y2

1 + b1y1y2 + c1y2
2 and

ψ2(y) = a2y2
1 + b2y1y2 + c2y2

2 can be
represented by the 6-dimensional vec-
tor (a1, b1, c1, a2, b2, c2). If we assume
that the Jacobian J f (0) is diagonal
with eigenvalues λi on the diagonal,
then the matrix representation of the
homological operator is itself diagonal,
and equal to

4λ1 − 2λ1 0 0 0 0 0
0 λ1 + λ2 − λ1 0 0 0 0
0 0 4λ2 − 2λ1 0 0 0
0 0 0 4λ1 − 2λ2 0 0
0 0 0 0 λ1 + λ2 − λ2 0
0 0 0 0 0 4λ2 − 2λ2


Once again, its eigenvalues
are nonzero provided that
m1λ1 + m2λ2 − λi ̸= 0, for all i ∈ {1, 2}
and for all m1, m2 ≥ 0 such that
m1 + m2 = 2.

■ Definition: Poincaré normal form
The Poincaré normal form of a vector field near an equilibrium is
the functional form of f (x) once all non-resonant terms have been
eliminated, by iterating the above procedure.

Example 30 (Poincaré normal form of a 1D hyperbolic equilibrium).
Take the scalar system

ẋ = −x + 2x2 − x3,

with an equilibrium in x = 0 and J f (0) = −1. Let us construct a diffeo-
morphism to remove the second-order term. We must find ψ[2] such that

[−y, ψ[2]] = − ∂

∂y
ψ[2]y + ψ[2] = 2y2.

The function ψ[2], combined with its derivatives, must be equal to a quadratic
term, so it is fair to assume ψ[2] = ay2. We obtain

−2ay2 + ay2 = 2y2 ⇒ a = −2,

We should thus use the local diffeomorphism x = y− 2y2 (and y = x +

2x2 + O(|x|3)) obtaining

ẏ = J−1
h (y) f (h(y))

=
1

1− 4y
(−y + 2y2 + 2y2 + 8y4 − 8y3 − (y− 2y2)3)

= −y
(1 + 4y)
1 + 4y

+ O(|y|3) = −y + O(|y|3)

We have eliminated the second-order term. We could proceed to eliminate
higher order terms in the same manner, though computation of the coeffi-
cients becomes rapidly cumbersome.

Example 31 (Poincaré normal form of a saddle-node). Consider the
system

ẋ =

(
1 0
0 0

)
x +

(
2x2

1
x1x2 + x2

2

)
.

Let us solve the homological equation for the second-order terms

∂

∂y

(
ψ1

ψ2

)(
1 0
0 0

)
y−

(
1 0
0 0

)(
ψ1

ψ2

)
=

(
2y2

1
y1y2 + y2

2

)
.

The equation above, assuming ψi(y) = aiy2
1 + biy1y2 + ciy2

2, can be written
as (

2a1y1 + b1y2 b1y1 + 2c1y2

2a2y1 + b2y2 b2y1 + 2c2y2

)(
1 0
0 0

)
y

−
(

a1y2
1 + b1y1y2 + c1y2

2
0

)
=

(
2y2

1
y1y2 + y2

2

)
,



70 nonlinear dynamics

that is, (
a1y2

1 − c1y2
2

2a2y2
1 + b2y1y2

)
=

(
2y2

1
y1y2 + y2

2

)
.

Comparing term by term we obtain the set of conditions
a1 = 2,

c1 = 0,

a2 = 0,

b2 = 1.

We do not have conditions on b1 and c2, so we can put them at 0, but we
also do not have the means to eliminate the y2

2 term in the second equation.
This is a resonant term, and we should have expected to find one, given that
the eigenvalues λ1 = 1 and λ2 = 0 of J f (0) satisfy 0λ1 + 2λ2 − λ2 = 0.
Note that, in general, resonant terms are not unique and depend on the
system’s representation.

The above coefficients give

[J f (0)y, ψ[2](y)] =

(
2y2

1
y1y2

)
,

therefore, in the new variables, the system becomes

ẏ =

(
1 0
0 0

)
y +

(
0
y2

2

)
+ O(∥y∥3).

Normal form reduction, to degree 2, has given us a definition (up to degree
2) of the dynamics within the stable manifold of the saddle (ẏ1 = y1) and
within the centre manifold (ẏ2 = y2

2).
The fact that y2

2 is resonant means that this term, or an equivalent one,
persists in any possible representation of the system, among all representa-
tions that can be obtained by polynomial change of variables! It is, in some
sense, a more relevant nonlinear term than the others. We can understand
why this is so also by looking at what would happen if we perturbed the
equation of ẏ2 by an arbitrary small constant:

ẏ2 = ϵ + y2
2 + O(∥y∥3).

Near 0 we would now have 0 or 2 equilibria, depending on the value of ϵ,
and this is due to the resonant nonlinear term.

In the above discussion, we have seen how to change variables
to make a system as similar as possible to a linear system, without
touching its linear part. This is, of course, not the only normal form
of interest. Another one, particularly interesting in nonlinear control,
is the feedback linearisation normal form.

We begin by considering a nonautonomous nonlinear system with
an affine dependence on the input, that is, a system of the form

ẋ = f (x) + g(x)u.

Let us assume for simplicity that u is a scalar signal. The question
is whether, by exploiting the additional degree of freedom provided
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by the input u, we can find a change of variable and a static feedback
input such that the feedback system is linear.

To do so, we use the Lie derivative notation, which we remem-
ber is the directional derivative along the flow of a scalar function.
Assume that we have a scalar function h(x) such that the system
satisfies the following condition

In the control literature, this condition
implies that the system has relative
degree n, but the notion of relative
degree and its implications are beyond
the scope of this discussion.

■ Definition: Feedback linearisation conditions
Let x ∈ Rn, and N be an open subset of Rn. There exists h(x) :
N → R such that, for all x ∈ N,

Lgh(x) = 0,

LgL f h(x) = 0,

...

LgLn−2
f h(x) = 0,

LgLn−1
f h(x) ̸= 0.

Then, we can prove the following result.

♦ Theorem
If the feedback linearization conditions are satisfied, the mapping

z = ψ(x)

with

ψ1 := h(x),

ψ2 := L f h(x),

...

ψn := Ln−1
f h(x),

is a diffeomorphism in N.

A proof is found in (Isidori, 1995)

In the coordinates z we have

żi =
∂ψi(x)

∂x
ẋ = L f ψi(x) + uLgψi(x).

This gives

ż1 =
∂h
∂x

ẋ =
∂h
∂x

f (x) +

=uLgh=0︷ ︸︸ ︷
∂h
∂x

ug(x) = L f h = z2,

ż2 = z3,

...

żn−1 = zn,

żn = Ln
f h(x) + LgLn−1

f h(x)u.
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Defining

a(z) : = Ln
f h(ψ−1(z)),

b(z) : = LgLn−1
f h(ψ−1(z)), ( ̸= 0 by assumption),

we obtain the new system

ż1 = z2,

...

żn = a(z) + b(z)u,

which is finally linearised by setting

u(z) :=
v− a(z)

b(z)
.

■ Definition: Feedback linearisation normal form
The feedback linearisation normal form is the system

ż1 = z2,

...

żn = a(z) + b(z)u.

⋆ Note that the above system with

u(z) :=
v− a(z)

b(z)

is linear and controllable (reachable).

Example 32. Consider the system

ẋ =

 x2

x2
1 + x2

2
x1 − x2

+

x3

x3

0

 u, h(x) = x3.

We have

Lgh(x) =
(

0 0 1
)

g =0,

L f h(x) =
(

0 0 1
)

f =x1 − x2,

LgL f h(x) =
(

1 −1 0
)

g =0,

L2
f h(x) =

(
1 −1 0

)
f =x2 − x2

1 − x2
2,

LgL2
f h(x) =

(
−2x1 1− 2x2 0

)
g =x3(−2x1 + 1− 2x2).

For all x3 ̸= 0 and (1 − 2x1 − 2x2) ̸= 0 the system is fully feedback
linearisable, so the mapping

z =

 x3

x1 − x2

x2 − x2
1 − x2

2


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is a local diffeomorphism. We can verify this by checking that

det Jψ(x) = det

 0 0 1
1 −1 0
−2x1 1− 2x2 0

 ̸= 0.

The condition x3 ̸= 0 ensures that a linearising input exists.

Example 33 (Limitations on the stability of the controlled equilib-
rium). The system

ẋ1 = x2
1 + x2 + ux1,

ẋ2 = −x1x2 + x2 − ux2,

has an unstable equilibrium in x̄ = (1,−1) for ū = 0.

-2 -1 0 1 2

-2

-1

0

1

2

x1

x2

We are going to stabilize it through feedback linearisation, with h(x) =

x1x2. We have

Lgh(x) =
(

x2 x1

)
g =0,

L f h(x) =
(

x2 x1

)
f =x1x2 + x2

2,

LgL f h(x) =
(

x2 x1 + 2x2

)
g =− x2

2,

L2
f h(x) =

(
x2 x1 + 2x2

)
f =3x2

2 − 2x1x2
2 + x1x2;

the system is, therefore, feedback linearisable in the domain x2 ̸= 0, through
the change of variables

z = ψ(x) =

(
x1x2

x1x2 + x2
2

)
, (2)
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which has inverse

x = ψ−1(z) =

(
± z1√

z2−z1

±√z2 − z1

)
.

We already know that the largest region containing x̄ where the diffeomor-
phism is defined is the set {x : x2 < 0}, and using (2) we see that the image
of {x : x2 < 0} through the diffeomorphism is the region {z : z2− z1 > 0}.
Therefore, ψ and ψ−1 define a diffeomorphism between compact subsets of
the sets {x : x2 < 0} and {z : z2 − z1 > 0}.

The coordinates of x̄ in the z variables are

z̄ =

(
−1
0

)
.

Setting

u =
v− L2

f h(x)

LgL f h(x)
=

v− (3x2
2 − 2x1x2

2 + x1x2)

−x2
2

, (3)

we obtain the closed-loop dynamics

ż1 = z2,

ż2 = v,

and we want to stabilize the equilibrium z̄ of the above system. Let us call
A and B the dynamic and input matrix of the above linear system. We can
assign the eigenvalues −1 and −2 to the dynamic matrix by setting

v = Kz + w =
(
−2 −3

)
z + w,

and then translate the equilibrium to z̄ by choosing w = w̄, where w̄ is such
that

−(A + BK)−1Bw̄ = z̄.

This gives

Bw̄ = −(A + BK)z̄,

that is, w̄ = −2.
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Remember that the diffeomorphism
maps the state space {x : x2 ̸= 0}
into the shaded region {z : z2 −
z1 > 0}. States z out of this region
are not related to any state in the x
coordinates. For this reason, the orbit
ϕ·(0, 1), in this figure, is mapped onto
two separate orbits in the x space,
corresponding to the blue and the
green segments respectively. The grey
segment has no representation in the x
space.

We can now use the expression of v in (2) and (3) to compute the input u:

u =

Kz︷ ︸︸ ︷
−2x1x2 − 3(x1x2 + x2

2)

w̄︷︸︸︷
−2 −(3x2

2 − 2x1x2
2 + x1x2)

−x2
2

=
−2− 6x1x2 − 6x2

2 + 2x1x2
2

−x2
2

.

This input stabilizes the equilibrium x̄, assigning it the eigenvalues −1 and
−2. We have the phase portrait above, in the z coordinates.

Now, we have seen how the diffeomorphism ψ maps compact subsets of
the sets {x : x2 < 0} and {z : z2− z1 > 0}, and we know that z̄ is globally
asymptotically stable. Does this mean that x̄ is globally asymptotically
stable? Obviously not, since the diffeomorphism that relates the two systems
is only defined in {x : x2 < 0}.

Then, does this at least imply that the equilibrium x̄ attracts any initial
condition in {x : x2 < 0}? Unfortunately, even this is not true, because
the set {z : z2 − z1 > 0} is not positively invariant. We see that clearly
in the phase portrait above, where the orbit ϕ·(0, 1) (the orbit that crosses
coordinates z = (0, 1)) leaves the set before converging to the equilibrium.
The image of this orbit through the diffeomorphism, ψ−1(ϕ·(0, 1)), is split
in two by the diffeomorphism (it is, effectively, two different orbits, repre-
sented in blue and green in the figures above and below). In particular,
the blue orbit, despite belonging entirely to the set {x : x2 < 0}, does not
converge to x̄.
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This is the phase portrait of

ẋ = f (x) +
Kz + w̄− Ln

f h(ψ−1(z))

Lg Ln−1
f h(ψ−1(z))

.

The equilibrium in (1,−1) is now
a stable node, with eigenvalues −1
and −2. However, it only attracts
initial conditions in the subsets of
ψ−1({z : z2 − z1 > 0}) that are
positively invariant under the flow of
ż = (A + BK)z + Bw̄. The blue and
green orbits in this portrait are the
images of the blue and green segments
of the orbit in the previous figure.
Notice how they correspond, here, to
different orbits.

Exercises

Exercise 32

Discuss if the following statements are true, or false, or if their truth
depends on further assumptions.

1. If an equilibrium x̄ of ẋ = f (x) is hyperbolic, then near x̄ the
flow is topologically equivalent to its linearization at x̄.

2. If an equilibrium x̄ of ẋ = f (x) is hyperbolic, then the non-
linear terms of f (x) near x̄ can be removed up to an arbitrary
order by a suitable change of variables.

3. System ẋ = f (x, u) has feedback linearisation normal form

ẋ =


x2

x3

x4

1 + x2
1 − x4x2

+


0
0
0

1− x2

 u.

It is feedback linearisable in the region

∥x∥ < 2.

Exercise 33

Verify that the feedback linearisation condition holds for h(x) =

x1 on the following system, and compute the diffeomorphism that
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changes the system in the feedback-linearisation normal form:

ẋ =

 x3

x2
1 + x3

x2

+

 0
1 + x1

0

 u.

Exercise 34

Compute the Poincaré normal form to the second order of

ẋ =

(
1 2
0 0

)
x +

(
2x1x2

x2
1 − x1x2

)
.

Exercise 35

A reaction wheel pendulum is modelled by the equations See (Spong, Corke, and Lozano, 2001)
for the model derivation

ẋ1 = x2,

ẋ2 = −a sin(x1)− bu,

ẋ3 = a sin(x1) + cu,

with a = 78, b = 206, c = 31161. Here x1 is the angle w.r.t the upward
equilibrium, x2 the angular velocity of the pendulum, x3 the angular
velocity of the wheel. Prove that the model is feedback linearisable
around 0, and determine in what region the diffeomorphism is well
defined.





Attractors

Keywords: ω-limit set, stability of sets, attractor, limit cycle, torus, chaotic attractor, sensitive depen-
dence on initial conditions

Definition of attractor

The previous chapter gave us the tools to classify systems according
to their topology, that is, their qualitative behaviour. If the concept
of topological equivalence is intuitively quite simple, the complexity
of normal form reduction and analysis should make it apparent that
there is very little hope of studying systems through homeomorphic
or diffeomorphic transformations of their full phase portrait. A much
more reasonable endeavour is to analyse a system near its asymptotic
behaviour, that is, near the set of states where we expect the system
to be most of the time. For a stable linear system, this would of
course be the equilibrium. We can extend this idea, formally, by
defining a more general set of asymptotic behaviours, which we call
the attractors.

In this chapter, we bring discrete-time systems back to the game:
all definitions, unless explicitly stated, apply both to continuous as
well as to discrete-time systems.

Example 34. The following figure shows the phase portrait of a Rosenzweig
MacArthur prey-predator model, with equations

ẋ1 = x1

(
1− x1

4

)
− x1x2

1 + x1
,

ẋ2 = −x2 + 2
x1x2

1 + x1
.
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How does the system behave for t→ ∞, for initial conditions in the positive
quadrant?

As we have seen for many other prey-predator models, the system has
three equilibria: two saddles and a focus, which in this case is unstable.
None of the equilibria is asymptotically stable so, even though they shape
the geometry of the phase portrait, none of them describes the asymptotic
behaviour of the system. This instead appears to settle onto a periodic orbit:
a limit cycle.

What we observe in the example is a typical feature of nonlinear
systems: the asymptotic behaviour is often described by more com-
plex sets than an equilibrium.

■ Definition: ω-limit point
A point x̄ is an ω-limit point of the orbit ϕ·(x) if there exists a
sequence t1, t2, . . ., tending to +∞, such that limk→∞ ϕtk (x)→ x̄.

■ Definition: ω-limit set
The ω-limit set of x, denoted ω(x), is the set of all limit points of
x.

■ Definition: α-limit set
The α-limit set of x, denoted α(x), is defined as the ω-limit set, but
with t→ −∞.

Example 35. The red equilibrium in the following figure is an ω-limit
set of itself and nothing else and is the α-limit set of all orbits within the
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green circle. The green circle is the α-limit set of itself, and the ω-limit set of
R2\0, since the flow of any points in R2\0 converges to the green circle and
visits a neighbourhood of any point of the circle infinitely often as t→ ∞.
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■ Definition: Lyapunov stability of a set
A positively invariant set S of a discrete or continuous-time system
is Lyapunov stable if, for every neighbourhood N of S, there exists
a neighbourhood M ⊂ N such that

x ∈ M⇒ ϕt(x) ∈ N, ∀ t ≥ 0.

Now, to define asymptotic stability for sets, let us first define the
distance between a point x and a set S as

d(x, S) := inf
y∈S
∥y− x∥.

■ Definition: Asymptotic stability
A positively invariant set S of a discrete or continuous-time system
is asymptotically stable if it is Lyapunov stable, and there exists a
neighbourhood N of S such that

lim
t→∞

d(ϕt(x), Ss) = 0,

for all x ∈ N.
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■ Definition: Attractor (Meiss, 2007)
An attractor is a set that is

1. compact,

2. asymptotically stable,

3. and the ω-limit set of some x.

There are multiple slightly different
definitions of attractor, see (Milnor,
1985). Wiggins (2003) for example,
requires topological transitivity instead
of the third condition.

In the above definition, the third statement requires that the whole
attractor be the ω-limit set of the same x. This allows us to distinguish
an attractor from the union of separate attractors.

Note that conditions 2 and 3 in the definition of attractor are both
necessary.

⋆ There exist Lyapunov-stable sets that are not attractors.

Example 36. Consider the linear system

ẋ =

(
0 1
−1 0

)
x.

A planar, linear equilibrium with
imaginary eigenvalues is called a
centre.

-2 -1 0 1 2

-2

-1

0

1

2

x1

x2

Its orbits are concentric circles around the origin. The origin is therefore
Lyapunov stable (check!), but it is not asymptotically stable.
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⋆ There exist asymptotically stable sets that are not attractors.

Example 37. The system

ẋ1 = x1 − x3
1,

ẋ2 = −x2,

has the following phase portrait
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It has a saddle in 0, and stable nodes in (−1, 0) and (1, 0). The interval
[−1, 1] on the x1 axis is a compact set and is asymptotically stable. How-
ever, it is not an attractor. It contains three distinct ω-limit sets, but it is
not itself an ω-limit set of any state x.

⋆ There exist ω-limit sets that are not attractors.

Example 38. An unstable equilibrium is the ω-limit set of itself. A saddle
is the ω-limit set of its stable manifold, but it is clearly not asymptotically
stable.

An attractor, by definition, must be asymptotically stable, there-
fore it must attract initial conditions in its neighbourhood. The union
of these initial conditions forms its basin of attraction.

■ Definition: Basin of attraction
The basin of attraction of an attractor O is the set{

x : lim
t→∞

d(ϕt(x), O) = 0
}

.
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Example 39. Consider again the system in Example 37. The basins of
attraction of the two nodes are the positive and negative half-plane, respec-
tively. They are separated by the stable manifold of the saddle in 0, which, in
this case, coincides with the x2 axis. In general, basins of attractions of dif-
ferent attractors are separated by invariant surfaces which are either sets of
orbits going to infinity, or stable manifolds of saddle sets (saddle equilibria,
cycles, etc.) For this reason, these manifolds are also called separatrices.

Consequently, the analysis of saddle sets can be as important as the anal-
ysis of attractors, to determine the global behaviour of a nonlinear system.

Types of attractors

According to the definition given before, a stable node or focus is
an attractor. There are, of course, more complex types of attractors.
Here we see some of the most common ones.

■ Definition: Limit cycle
A limit cycle is an isolated periodic orbit.

The above definition identifies a limit cycle as a periodic orbit that
has no other periodic orbit in a neighbourhood. This means that
limit cycles are not necessarily attractors, and indeed non-attracting
limit cycles play an important role in organizing the dynamics of
many nonlinear systems. However, we will most often deal with
limit cycles that are also attractors, which we simply call stable limit
cycles.

■ Definition: Stable limit cycle
A stable limit cycle is a limit cycle that is asymptotically stable and
is therefore an attractor.

The examples of limit cycles that we have seen before were mostly
from continuous-time systems. In this case, the limit cycle is a closed
curve. A limit cycle of a discrete-time system has a markedly differ-
ent appearance: it is a closed but non-connected set.

Example 40. Consider the discrete-time systems

x(t + 1) = −x3(t).

It has a fixed point in x = 0, but we can also easily see that f (1) = −1
and f (−1) = 1. The two points −1 and 1 form a periodic orbit, and with
a little more effort we could prove that it is isolated: it is a limit cycle.
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Note that the blue line is not an orbit!
It is a graphical representation of the
iteration between the two states of the
limit cycle: x = −1 and x = 1.

Besides limit cycles, nonlinear systems can exhibit many other
forms of asymptotic dynamics that are not possible in linear systems,
and yet are very relevant in applications. A major one, that has had
a deep impact on our understanding of many physical phenomena,
is chaotic dynamics.

■ Definition: Sensitive dependence on initial conditions
A positively invariant set N exhibits sensitive dependence on ini-
tial conditions if there exists a constant r > 0 such that, for all
ϵ > 0 and x in N, there exist y ∈ N with ∥x − y∥ < ϵ such that
∥ϕt(x)− ϕt(y)∥ > r for some t ≥ 0.

■ Definition: Chaotic attractor
An attractor exhibiting sensitive dependence on initial conditions
is a chaotic attractor

Example 41 (Lorenz attractor). Orbits of the Lorenz system

ẋ1 = 10(x2 − x1),

ẋ2 = x1(28− x3)− x2

ẋ3 = x1x2 −
8
3

x3, ,

which models the amplitudes of the fundamental modes of oscillation of a
2D fluid with a temperature gradient, converge to a chaotic attractor. The
attractor can be shown to be a fractal set.
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In between the relative dullness of periodic dynamics, and the
complexity of chaotic dynamics, lies the set of those behaviours ob-
tained from the composition of multiple periodic functions, with fre-
quencies arranged in a way that makes the overall dynamics nonperi-
odic. This happens when two or more periodic components combine,
with frequencies that are not in rational relation (e.g., frequencies θ1

and θ2 such that k1θ1 + k2θ2 ̸= 0 for any nonzero integer k1 and k2.)

■ Definition: Quasiperiodic attractor
A quasiperiodic attractor is an attractor where the states x(t) os-
cillate according to a quasiperiodic function F(tθ) , where θ :=
(θ1, . . . , θd) and kθ ̸= 0, ∀k ∈ Zd\0.

Example 42. A quasiperiodic orbit with 2 frequencies in non-rational rela-
tion can typically be represented, through a suitable change of variables, as
an infinitely long curve wrapped around a torus, as in the following figure
(where the two angular frequencies are 1 and 2π).
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Note that the blue line represents only a small portion of the orbit, which
would densely cover the whole torus surface. You can see the interrupted
orbit in the lower left end of the figure.

Example 43 (A discrete-time quasiperiodic attractor). The discrete-
time system

x1(t + 1) = x2(t),

x2(t + 1) = (1 + r)x2(t)− rx1(t)x2(t)− cx2(t)x3(t),

x3(t + 1) = cx2(t)x3(t),

which is an embedding in 3 dimensions of a discrete-time prey-predator
model from (Kot, 2005), has, for r = 0.58 and c = 1.85, the following
quasiperiodic attractor.
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The apparently continuous curve consists of a multitude of nearby iterations
of the map arranged along the torus; to give an idea of how states within the
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attractor are mapped, 14 subsequent iterations of the map are plotted in red
and numbered sequentially.

Exercises

Exercise 36

Identify the stable and unstable manifolds of the three equilibria in
the following phase portrait and the basin of attraction of the stable
equilibria.
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Exercise 37

Propose a nonlinear dynamical system with a periodic orbit that
is not a limit cycle.

Exercise 38

The system

ẋ1 = x1 − x2 − x1(x2
1 + x2

2),

ẋ2 = x1 + x2 − x2(x2
1 + x2

2),

which we will eventually meet as Hopf normal form, has a stable
limit cycle (hence, an attractor) of the equation

x2
1 + x2

2 = 1 :
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If we modify it by a time rescaling, as follows:

ẋ1 =
(

x1 − x2 − x1(x2
1 + x2

2)
)
(1− (x2

1 + x2
2))

2,

ẋ2 =
(

x1 + x2 − x2(x2
1 + x2

2)
)
(1− (x2

1 + x2
2))

2,

is the circle x2
1 + x2

2 = 1 still an attractor?

Exercise 39

What is the basin of attraction of the stable limit cycle in this
Rosenzweig-MacArthur model?
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Exercise 40

The frictionless pendulum of equations

ẋ1 = x2,

ẋ2 = −10 sin(x1),

with x ∈ R2, has phase portrait
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Discuss the existence of periodic orbits and limit cycles in the model.





Limit cycles

Keywords: Poincaré-Bendixon theorem, Dulac’s criterion, Poncaré map, stable unstable and centre
manifold of a cycle, monodromy matrix, Floquet multipliers, multipliers stability criterion.

In this chapter, we focus on periodic orbits and limit cycles of
contiuous-time systems, and in paticular we learn about some of the
tools that can be used to prove the existence or nonexistence of limit
cycles, or to study their stability and characterize the neighbouring
phase portrait. A good part of the chapter is devoted to planar sys-
tems, where more powerful tools are available.

Example 44. Let us consider a spring-mass model with a nonlinear friction
characteristic:

This is known as the Van der Pol
oscillator and was originally proposed
as a model for a vacuum tube circuit.

ẋ1 = x2,

ẋ2 = −x1 − x2(x2
1 − 1).

The system has a single equilibrium in the origin, and

J f (0) =

(
0 1
−1 1

)

has eigenvalues 1
2 ± i

√
3

2 . It is therefore an unstable focus. From physical
reasoning, however, we can see that for large displacements of the spring
(large |x1|) the system has positive friction coefficient (x2

1 − 1) and should
therefore behave more or less like a regular, dissipative damped spring. We
can thus expect the system to settle on a bounded asymptotic behaviour,
which must however not be an equilibrium. Can we prove that it is a limit
cycle, and how?

In general, proving or disproving the existence of limit cycles is a
tough problem. It is somewhat simpler in planar continuous-time
systems, where a set of rather powerful tools can be constructed
based on the fact that periodic orbits divide the plane in two dis-
joint sets.

For similar results in higher-dimensional systems, we will have
to use ingeniously some results from bifurcation theory and normal
form reduction, which we will learn later on.

Existence theorems for continuous-time systems in R2

The first (non)-existence theorem is a simple consequence of the
Poincaré index of periodic orbits, which we already met a few chap-
ters ago.
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♦ Theorem
A limit cycle in the plane must enclose a set of equilibria of total
index 1.

Therefore, for example, regions of the plane without equilibria
cannot have limit cycles. The following theorem adds some more
structure to this basic observation.

For a proof see e.g. (Wiggins, 2003)

♦ Poincaré Bendixon theorem
Let f (x) be a continuously differentiable continuous-time vector
field in R2, and M be a positively invariant compact subset of R2

containing a finite number of equilibria of f (x). For all x ∈ M,
one of the three following statements holds:

1. ω(x) is an equilibrium,

2. ω(x) is a periodic orbit,

3. ω(x) consists of a finite number of equilibria p1, . . . , pn and
orbits γ with α(γ) = pi and ω(γ) = pj.

This theorem is important for what it proves to exist, as well as
for what it proves cannot exist:

Here the fact that we are considering
continuous-time systems is essential:
even 1D discrete-time systems can
have chaotic attractors, see the tent
map. We will later see that, even for
continuous-time systems, continuous
differentiability is essential. Discon-
tinuous or hybrid systems can behave
like discrete-time ones in this respect.

♦ Corollary
A continuous-time system in R2 cannot have quasiperiodic or
chaotic attractors.

♦ Corollary
If M does not contain stable equilibria or saddles, then every x ∈
M converges to a periodic orbit.

Example 45. The following equations, from (Strogatz, 1994), describe a
kinetic model of glycolysis in yeast cells

ẋ1 = −x1 + ax2 + x2
1x2,

ẋ2 = b− ax2 − x2
1x2,

with a, b > 0.
The nullclines are

ẋ1 = 0⇒ x2 =
x1

a + x2
1

and

ẋ2 = 0⇒ x2 =
b

a + x2
1

.

and intersect at x1 = b, x2 = b
a+b2 .
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Consider now the subset M (green in the figure below) of the positive
quadrant enclosed by the lines

x1 = 0,

x2 = 0,

x2 =
b
a

,

x1 + x2 = b +
b
a

.

We can see that M is positively invariant:

∂

∂x
(−x1) f (x)

∣∣∣
x1=0,x2∈[0,b/a]

=− ax2 < 0,

∂

∂x
(−x2) f (x)

∣∣∣
x1∈[0,b+b/a],x2=0

=− b < 0,

∂

∂x
(x2 − b/a) f (x)

∣∣∣
x1∈[0,b],x2=b/a

=− b
a

x2
1 ≤ 0,

∂

∂x
(x1 + x2 − b− b/a) f (x)

∣∣∣
x1∈[b,b+b/a],x2∈[0,b/a]

=b− x1 < 0.

By the Poincaré Bendixon theorem, all initial conditions in M converge
to the equilibrium, to a homoclinic connection of the stable and unstable
manifold of the equilibrium, or to a periodic orbit.

Now, note that

J f (b, b/(a + b2)) =

(−a+b2

a+b2 a + b2

−2b2

a+b2 −a− b2

)
.

We have

det(J f ) = a + b2 > 0,

so the equilibrium is not a saddle, and we can rule out convergence to a
homoclinic connection. Then, we have

tr(J f ) =
−a + b2 − (a + b2)2

a + b2 .

For values where tr(J f ) > 0 the equilibrium is unstable. In this case, M
must contain a periodic orbit.

Glycolysis model with a = 0.1, b = 0.6.
The region M is shaded green.
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While the Poincaré-Bendixon theorem is typically used to prove
the existence of limit cycles, the following theorem is used to exclude
the existence of cycles in a given region.

♦ Dulac’s criterion
Let f (x) be a continuously differentiable continuous-time vector
field defined in a simply connected subset N of R2. If there exists
a continuously differentiable function g(x) : R2 → R such that

∇ · (g(x) f (x)) :=
∂

∂x1
g(x) f1(x) +

∂

∂x2
g(x) f2(x)

is everywhere nonzero and has a constant sign, then there are no
periodic orbits lying entirely in N.

A subset of R2 is simply connected if
any closed curve in it can be shrunk to
a point without leaving the set.

Here ∇· is the divergence.

Example 46. Consider

ẋ1 = −1− x1 + x2
2,

ẋ2 = x2(1 + x2
1 − x2

2).

Note that the x1 axis is an invariant set, therefore periodic orbits can only
exist if entirely contained in the regions above or below the x1 axis.

Now, consider g(x) = 1
x2

. We have

∇ · g(x) f (x) =
∂

∂x1

(
− 1

x2
− x1

x2
+ x2

)
+

∂

∂x2

(
1 + 2x2

1 − x2
2

)
= − 1

x2
− 2x2.
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This has a constant sign for x2 > 0 or x2 < 0, therefore the system cannot
have limit cycles.

The next approach to proving existence of periodic orbits applies
only to continuous-time dynamical systems with a very special struc-
ture: conservative systems.

■ Definition
A continuous-time system with vector field f (x) is conservative if
there exists a scalar function V(x) : Rn → R such that V̇(x) = 0,
for all x ∈ Rn, and such that V(x) is nonconstant on every open
set.

This means that the function V(x) is constant along any orbit of
the system. While the above property may seem excessively con-
straining at first sight, it is in fact relatively common. Consider, for
example, the law of motion of a 1-degree of freedom object subject
to Newton’s law, without friction:

mẍ = F(x).

Let us define the potential energy E(x) as a function such that ∂E(x)
∂x =

−F(x). Using the above equations, and multiplying by ẋ, we obtain

mẋẍ +
∂E(x)

∂x
ẋ = 0,

which can be written as

d
dt

[m
2

ẋ2 + E(x)
]

Thus, the function V(x) = m
2 ẋ2 + E(x) (the total energy) is constant

along orbits. We can use this fact to prove existence of periodic orbits
near an equilibrium, as follows.

See Strogatz (1994), Theorem 6.5.1

♦ Theorem on periodic orbits of conservative systems.
Consider a planar, continuously differentiable, and conservative
vector field f (x), with conserved quantity V(x). If an isolated
equilibrium x̄ is a local maximum or minimum of V(x), then all
the orbits in a sufficiently small neighbourhood of x̄ are periodic.

⋆ A consequence of the above theorem is that the periodic orbits are
not limit cycles, since they are not isolated.

Notice that the existence of a conserved quantity alone is not suf-
ficient to prove existence of periodic orbits, since the level curves
of V(x) are not necessarily closed. Notice also that, while it is al-
ways true that any orbit of a planar conservative system belongs to a
unique level cure, the converse is not true: level curves may include
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multiple orbits. As an example of this, consider the S and I variables
of the SIR model:

Ṡ = −aIS,

İ2 = aIS− bI.

The quantity V(x) = − b
a log(S) + S + I is a conserved quantity, For conserved quantities in more

general SIR models see, e.g., (Mestres
and Cortes, 2022)

hence the above system is conservative. Its level curves are plot-
ted in the figure below. We see that each level curve includes both an
orbit corresponding to an epidemic wave, and up to two equilibria,
which lie at the intersection of the level curve with the axis I = 0.

Finally, the last existence theorem that we see is very specific, in
terms of the assumptions, but applies to a family of systems that is
relatively common in electrical and mechanical engineering. It was
indeed mainly used in the first half of the 20th century, to prove
oscillations in certain models of nonlinear electrical circuits.
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♦ Lienard theorem
Consider a system of the form

ẋ1 = x2,

ẋ2 = −g(x1)− f (x1)x2.

If

1. f (x1) and g(x1) are continuously differentiable for all x1,

2. g(−x1) = −g(x1) for all x1 (g is an odd function),

3. g(x1) > 0 for x1 > 0,

4. f (−x1) = f (x1) for all x1 ( f is an even function),

5. F(x1) :=
∫ x1

0 f (u)du has exactly one positive root a, is negative
for 0 < x1 < a positive nondecreasing for x1 > a, and tends to
∞ as x→ ∞,

then the system has a unique stable limit cycle surrounding the
origin.

Example 47. Consider again the Van der Pol oscillator

ẋ1 = x2,

ẋ2 = −x1 − x2(x2
1 − 1).

We have

g(x) = x1

and

f (x) = x2
1 − 1.

The function g is odd and positive for positive x1, while f is even and

∫ x1

0
f (u)du =

1
3

x3
1 − x1,

which has exactly one positive root x1 =
√

3, and is negative between 0 and√
3. The system is therefore guaranteed to have a unique stable limit cycle.

The phase portrait is given below.
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Poincaré maps

Let us now address the problem of determining the stability of a
limit cycle. If we are dealing with a discrete-time system, then once
we have proved that a given state x is a fixed point of the m-times
iterated map f (m) = f ◦ f ◦ . . . f (x) while it is not a fixed point for
any map iterated less than m times (i.e, it is a periodic orbit of period
m) its stability is easily discussed by studying the Jacobian of f (m) at
x. All that we know about invariant manifolds translates as well to
this map. Things might seem less straightforward for a limit cycle in
a continuous-time system: how can we determine the stability of the
cycle? Does it have stable and unstable manifolds, like equilibria do?
We can answer these questions quite easily by reducing the analysis
to that of a discrete-time system.

■ Definition: Poincaré section
Given a continuous-time dynamical system of order n and a point
x̄ ∈ Rn, a Poincaré section in a neighbourhood of x̄ is a surface S
of dimension n− 1 such that f (x) is not tangent to S at any point
in the neighbourhood.

■ Definition: Poincaré map
The Poincaré map on a section S is the map S → S obtained by
taking any point x ∈ S and following ϕt(x) until its first return on
S
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Of course, the Poincaré map may in general not exist, for an ar-
bitrary section S. It is however defined in a neighbourhood of any
periodic orbit, and this is the context where we use it most often.

Example 48. The following system, represented in polar coordinates and
defined in R2\0, has a limit cycle of radius 1 around the origin:

ρ̇ = 1− ρ,

θ̇ = 2π.

Let us take as Poincaré section a segment of constant θ, ρ ∈ (0, ∞]. We
can compute explicitly the Poincaré map by solving the equation of ρ for
t ∈ [0, 1]. We obtain

ρ(1) = e−1ρ(0) + e−1
∫ 1

0
eτdτ = e−1(ρ(0)− 1) + 1.

We see that 1 is a fixed point of the Poincaré map. We should have expected
this since we have a periodic circular orbit of radius 1. We also see that the

J f (1) = e−1,

the eigenvalue of the Jacobian is within the unit circle. The fixed point of
the map is therefore asymptotically stable.

A continuous-time periodic orbit is therefore a fixed point of some
Poincaré map. We have also seen that fixed points have stable, unsta-
ble, and centre manifolds, by the nonhyperbolic Hartman-Großman
theorem. We can conclude that any continuous-time periodic orbit,
just like any equilibrium, has a stable, an unstable, and a centre man-
ifold.

■ Definition: Stable, unstable, and centre manifold of cycles
The stable, unstable, and centre manifold of a cycle are manifolds
formed by orbits that intersect the stable, unstable, and centre
manifold of the corresponding fixed point on the Poincaré map.

Example 49. A saddle cycle in 3 dimensions, that is, a cycle whose Poincaré
map is a saddle fixed point, has a 2-dimensional stable and a 2-dimensional
unstable manifold.
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Stability and the monodromy matrix

■ Definition: Fundamental matrix
The fundamental matrix of a time-dependent linear system

ẋ = A(t)x

is the solution of the matrix differential equation

Ẋ = A(t)X, X ∈ Rn×n, X(0) = I.

Using the superposition principle (which holds for time-dependent
linear systems), one can see how the fundamental matrix X(t) pro-
vides a means to determine x(t) as

x(t) = X(t)x(0).

In the context of limit cycle analysis, we can use the above idea to
study the behaviour of the nonlinear vector field in the vicinity of
the periodic orbit ϕ·(x), by studying the dynamics of the linearised
vector field

ξ̇ = J f (ϕt(x))ξ

over one period T of the orbit.

Notice that the eigenvalues of X(T) are
in general not related to those of J f , so,
for example, one can be unstable while
the other is uniformly stable.

■ Definition: Monodromy matrix
Given a periodic orbit ϕ·(x) of period T of a continuously differen-
tiable vector field f (x), its monodromy matrix is the fundamental
matrix X(T) of

ξ̇ = J f (ϕt(x))ξ

at time T.

■ Definition: Floquet multipliers
The eigenvalues of the monodromy matrix are called Floquet mul-
tipliers of the periodic orbit.

Periodicity of the orbit puts a constraint on the multipliers and
eigenvectors of the matrix: perturbations in the direction of the flow
must be mapped onto themselves after one period. This implies that
there always exists one direction, parallel to the flow, along which
the matrix has unitary eigenvalue.

♦ Trivial multiplier
The monodromy matrix always has a multiplier equal to 1, called
the trivial multiplier, and corresponding to an eigenvector parallel
to f (x(0)) = f (x(T)).
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♦ Theorem
The n multipliers of the monodromy matrix are the n− 1 eigen-
values of the Poincaré map linearised at the fixed point, plus the
trivial multiplier 1.

Sketch of proof. The linearised Poincaré map is obtained as the com-
position of the monodromy matrix, and a projection of the resulting
vectors back onto the Poincaré section along the flow. The flow is,
however, parallel to the leading order to the direction of the eigen-
vector corresponding to the trivial multiplier. The composition of the
two linear transformations therefore has a zero eigenvalue, which
takes the place of the trivial multiplier, plus all the eigenvalues of
the original monodromy matrix.

Given the monodromy matrix X(t), an
infinitesimal perturbation ξ from the
periodic orbit on the Poincaré section
is mapped back onto the section by the
mapping PXξ, with

P := I − f (0)n⊤

n⊤ f (0)
,

where f (0) is the vector field where
the cycle intersects the Poincaré
section, and n is a normal vector to the
section. It is easy to see how f (0) is an
eigenvector of P with eigenvalue 0.We can now translate, with minimal changes, all that we know

about the stability of fixed points in discrete-time systems to the
study of the stability of periodic orbits.

This is, of course, equivalent to the
eigenvalue criterion for discrete-time
systems. The fact that the periodic
orbit is a limit cycle follows from
the Hartman-Großman theorem for
discrete-time hyperbolic equilibria.

♦ Multipliers criterion for cycles
If all the Floquet multipliers of a periodic orbit except the trivial
one are strictly inside the unit circle, then the orbit is an asymp-
totically stable limit cycle. If at least one multiplier is outside of
the unit circle, then the orbit is an unstable set.

The Poincaré map is therefore a fundamental tool to study the
stability of limit cycles. The Jacobian of this map around the fixed
point corresponding to the periodic orbit has a close relative in a
matrix, known as the fundamental matrix, used in the analysis of the
stability of a time-dependent linear system.

Exercises

Exercise 41

A continuous time system has a periodic orbit with a monodromy
matrix

M =

−1 2 0
2 −1 0
−2 −1 −2

 .

1. Is this a limit cycle, and what are its Floquet multipliers?

2. Is the orbit an attractor?

3. Consider now the system obtained by reversing time. Is the
periodic orbit an attractor in this system?

Exercise 42
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Which of these can be monodromy matrices of a continuous-time,
continuously differentiable vector field around a periodic orbit?(

1 0
−3 2

)
,

(
3 −2
0 2

)
,

(
1 0
−1 0

)
.

[Hint, by Picard-Lindelöf the orbits of the systems are unique in the
neighbourhood of any state, hence they cannot merge.]

** Exercise 43

Can the following matrix be the Jacobian of the Poincaré map of a
limit cycle in 3 dimensions? (

−0.5 0
0 2

)

Hint: think about the geometry of the stable and unstable mani-
folds.

** Exercise 44

Consider a fixed point of a Poincaré map of a 3-dimensional sys-
tem, with a stable and an unstable manifold. Assume that the dy-
namics in the stable manifold has an equation

x(t + 1) = −0.5x(t),

while the dynamics in the unstable manifold is given by

x(t + 1) =
−3ϵx

x2 + 2ϵ

for some ϵ << 1.

1. Identify the fixed points of the Poincaré map and of the second-
iterated Poincaré map in the unstable manifold.

2. In light of the above analysis, sketch the 3D phase portrait
near the limit cycle.

Exercise 45

Prove that the system

ẋ1 = −x3
1 + 2x1x2 + x1,

ẋ2 = −x3
2 − x2

2 − 2x2,

cannot have periodic orbits.
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Exercise 46

Prove that the SIR model

Ṡ = −aIS,

İ = aIS− bI,

Ṙ = bI,

cannot have periodic orbits.

Exercise 47

Prove that the system

ẋ1 = x2,

ẋ2 = −x1 + x2(1− x2
1 − x2

2),

has a periodic orbit.

Exercise 48

Prove that the following model has a limit cycle:

ẋ1 = x2,

ẋ2 = −x3
1 − x2(3x2

1 − cos(x1)).

** Exercise 49

Prove that the Lotka Volterra model

ẋ1 = x1(a− bx2),

ẋ2 = x2(cx1 − d).

has infinitely many periodic orbits around the equilibrium x̄ = (d/c, a/b),
and that these are not limit cycles.





Chaotic attractors

Keywords: Lyapunov exponents, properties of the Lyapunov exponents, fractal set, strange attractor.

Chaotic dynamics

According to the Poincaré Bendixon theorem, the only attractors of
a planar continuous-time system can be equilibria or limit cycles.
As soon as we add a third dimension or we move to discrete time,
however, things can get a lot more complicated: the menu of possible
attractors now includes tori and chaotic attractors. We will learn later
on how tori are rather fragile objects, in the sense that they tend to
disappear under very small perturbations of the vector field, unless
a special structure is assumed (e.g., Hamiltonian systems). Chaotic
attractors, on the other hand, are surprisingly common.

We have already seen one in the Lorenz system, which was origi-
nally derived as a simplified model of atmospheric convection:

Example 50 (Lorenz system).

ẋ1 = 10(x2 − x1),

ẋ2 = x1(28− x3)− x2,

ẋ3 = x1x2 −
8
3

x3.
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Another famous one is found in the Rössler system. Initially con-
structed as an academic example of a simple system exhibiting chaos
(it is a linear system with the addition of a single quadratic term), the
Rössler model was later found to be a good prototype for chaotic dy-
namics in chemical reactions (Scott, 1991).

Example 51 (Rössler system).

ẋ1 = −x2 − x3,

ẋ2 = x1 + 0.2x2,

ẋ3 = 0.2 + x3(x1 − 5.7).

−5
0

5
10 −10

0
0

10

20

x1

x2

x 3
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Unfortunately, if chaotic attractors are common, characterizing
an attractor as chaotic, that is, distinguishing it from a very long
limit cycle, is not trivial. The essence of chaos, sensitive dependence
on initial within a bounded positively invariant set, is generated in
the majority of chaotic attractors by a common topological princi-
ple, which is elegantly described by a mechanism known as Smale’s
horseshoe:

A set of states within the attractor is stretched (this introduces the
sensitive dependence on initial conditions), then folded back to itself
(this ensures positive invariance). The simplest prototype of this
mechanism is provided by the tent map,

x(t + 1) =

2x(t), x(t) ≤ 0.5,

2− 2x(t), x(t) > 0.5.

where the set is the real interval [0, 1], the stretching is given by the
multiplication by 2, and the folding by the tent shape.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x(t)

x(
t+

1)

Consider the binary representation
of the points in the interval [0, 1],
and notice that the binary number
0.111 . . ., with infinitely repeating
1s, correspond to unity, since it is
limi→∞

1
2i . In this representation, we

can easily see that 1− x is obtained by
flipping all the fractional digits of x.
Let us call this operator ¬. Let us also
define the left-shift operator← (x),
which shifts left the bits of a binary
representation, and implements the
multiplication by 2. Finally, let us call
x1 the first fractional digit of x The tent
map can now be written as

x(t + 1) =

{
← (x(t)) x1(t) = 0
← (¬x(t)) x1(t) = 1

The structure of the tent map orbits
can, in this way, be deduced from the
sequences of repeating 0s and 1s in
the binary representation of the real
numbers in [0, 1].

Sensitive dependence on the initial condition for the dynamics of the
[0, 1] interval of this map can be proved as a simple exercise of sym-
bolic dynamics (see note on the right). A ghost of the stretch-and-
fold mechanism can also be seen in the single lobe of the Rössler
attractor, which stretches the orbits spiralling out and reinjects them
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within the spiral, and in the connection of the two lobes of the Lorenz
attractor, which are connected so as to reinject into each other orbits
once they have spiralled sufficiently far within the two wings of the
butterfly. The attractors of less trivial systems, however, cannot be
treated as easily, and a formal proof of chaoticity by e.g. symbolic
dynamics is in general far from trivial. A more common approach
is then to extrapolate from the tools we have been using so far to
analyse the stability of equilibria and periodic orbits, that is, eigen-
values and the fundamental matrix. The tool that results from this
extrapolation are the Lyapunov exponents.

Lyapunov exponents

Formally, an attractor is chaotic if it exhibits sensitive dependence on
initial conditions. Notice that sensitive dependence alone is not an
indication of chaos; in

ẋ = x

solutions depend sensitively on initial conditions (distance between
ϕt(x) and ϕt(x′) grows exponentially for x ̸= x′), yet there is noth-
ing chaotic about this linear system. If, however, the orbits within
the attractor diverge exponentially, this is indeed an indication of
chaos. In practice, this condition can be evaluated recurring to the
computation of the attractor’s Lyapunov exponents.

Consider once again the fundamental matrix of the system

ξ̇ = J f (ϕt(x))ξ,

which we used to define the monodromy matrix when ϕ·(x) is a
periodic orbit.

If we now take a generic orbit ϕ·(x), periodic or not, we may
attempt to measure how fast nearby orbits converge to it, or diverge
from it, by measuring the rate of divergence

∥X(t)ξ∥
∥ξ∥ ,

where X is the fundamental matrix and ξ is a small perturbation
from ϕ·(x). This rate is of course time-dependent. We may obtain a
time-independent quantity by taking its time average:

lim
T→∞

sup
t>T

1
t

log
∥X(t)ξ∥
∥ξ∥ .

In the above function, limT→∞ supt>T is more commonly denoted
lim supt→∞, and is needed (as opposed to a simple limt→∞) to handle
cases where the limit itself does not exist, though in many cases we
may use the simple limt→∞.

More details on when lim can be
used are found in (Wiggins, 2003), for
example.

The value of the above limit of course depends on the choice of the
perturbation ξ, and is somehow related to the different directions in
which the matrix J f (ϕ·(x)) may expand or contract vectors. One can
however prove that, given an n-dimensional flow, there are at most n
different values of this limit.
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■ Definition: Lyapunov exponents
The Lyapunov exponents of an orbit ϕ·(x) are the (at most) n val-
ues of

lim sup
t→∞

1
t

log
∥X(t)v∥
∥v∥ ,

for v ∈ Rn, where X(t) is the fundamental matrix of

ξ̇ = J f (ϕt(x))ξ.

To clarify the meaning of this expres-
sion, imagine that vector ξ be stretched
exponentially with exponent λ, so
that ξ(t) = eλtξ. Then, the ’Lyapunov
exponent’ of this transformation is

lim
t→∞

1
t

log eλt = λ.

Why n different exponents, and why
this relation between exponents and
areas, volumes,...?

Take a one-dimensional straight
segment of initial conditions. It is
transformed by the linear time-varying
vector field in a straight segment
(linearity!), of length on average
eλ1 t times the length of the original
segment, where λ1 is the (largest)
Lyapunov exponent:

X(t)

Now take a two-dimensional square
of initial conditions. It is transformed
into a parallelogram:

X(t)

As t → ∞, the long side of the paral-
lelogram grows faster than the short
side, as they grow exponentially with
different exponents, and the parallelo-
gram becomes thinner. Asymptotically,
most of the vectors of initial conditions
within the original square become
aligned with the long side of the paral-
lelogram, so it does not matter which
initial condition we choose to compute
the largest Lyapunov exponent, the
asymptotic value will remain almost
always the same.

There is, however, one (time-
dependent) direction which will
give a different value: the red arrow in
the figure. This direction transforms
according to the height of the paral-
lelogram, proportional to eλ2t with
λ2 < λ1.

If we now take a 3-dimensional cube
of initial conditions we can repeat the
reasoning, finding a third exponent
λ3 < λ2 < λ1. We can find at most
n such exponents, and the sum of the
first m gives the rate of growth of an
m-dimensional volume.

⋆ Imagine writing the Lyapunov exponents in decreasing order

λ1 > λ2 > . . . ,

and imagine taking a small m-dimensional cube of initial pertur-
bations, with 1 ≤ m ≤ n, and measuring its m-dimensional vol-
ume V(t) as it is transformed by the flow of

ξ̇ = J f (ϕt(x))ξ.

We have

λ1 + λ2 + . . . + λm = lim
t→∞

1
t

log
V(t)
V(0)

.

Hence, the largest exponent measures how the main direction of
the cube (the base) is transformed by the flow, the other exponents
measure how the minor direction (the heights) are transformed,
their sum giving the rate of change of the volume.

♦ Theorem
The Lyapunov exponents of an orbit ϕ·(x) are independent of the
initial condition.

This is a simple consequence of the limt→∞ in the definition. It
means that the Lyapunov exponents are a property of the orbit, not
of the initial condition.

♦ Theorem
Almost all orbits converging to the same attractor have the same
Lyapunov exponents

We can therefore expect to compute the Lyapunov exponents of
an attractor by computing those of a generic orbit converging to
it. Moreover, Lyapunov exponents characterize the attractor in a
coordinate-free way, that is, they do not change through a change
of variables:
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♦ Theorem
Corresponding attractors in flows that are topologically conju-
gated through a diffeomorphism have the same Lyapunov expo-
nents.

Note that the above theorem implicitly requires the diffeomor-
phism to be defined over the whole attractor.

For the simple attractors seen before – equilibria and limit cycles
– we have a trivial relation between the Lyapunov exponents and the
eigenvalues or multipliers.

♦ Theorem
The Lyapunov exponents of an equilibrium are

ℜ(λi)

where λi are the eigenvalues of the Jacobian matrix at the equilib-
rium.

♦ Theorem
The Lyapunov exponents of a periodic orbit are 1

T log ∥λi∥, where
λi are the Floquet multipliers of the orbit.

The above theorem in particular implies that 0 is always a Lya-
punov exponent of a periodic orbit, given that 1 is always a Floquet
multiplier. This is actually a more general property:

♦ Theorem
If ϕ·(x) is a bounded orbit of a continuous-time system, that does
not tend to an equilibrium, then it has 0 as a Lyapunov exponent.

Intuitively, this property follows from the fact that two points on
a bounded orbit not converging to an equilibrium cannot tend to
each other (or the orbit would be converging to an equilibrium), but
also cannot diverge (since the orbit is bounded and therefore f (x) is
bounded), hence on average they maintain a constant distance.

We are finally ready to state a criterion to determine if an attractor
is chaotic.

♦ Lyapunov exponents criterion for chaos
If an attractor has a positive Lyapunov exponent then it is chaotic,
with exponential sensitive dependence on initial conditions.

In the theorem, exponential sensitive dependence on initial condi-
tions means that orbits separate at an exponential rate. This is not
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always the case, though there are no general-purpose results to de-
termine sensitive dependence on initial conditions in attractors with
no positive Lyapunov exponents.

We have seen how Lyapunov exponents measure how fast nearby
orbits diverge. The largest among these exponents should therefore
give us an estimate of how far ahead in time the numerical integra-
tion of an orbit can be considered reliable, provided that any numeri-
cal integration scheme is bound to introduce some error, albeit small.

The Lyapunov time should be con-
sidered an estimate of the order of
magnitude of the horizon of pre-
dictability of an orbit, definitely not an
accurate measure of it.

■ Definition: Lyapunov time
Given an orbit with positive largest Lyapunov exponent λ1, its
Lyapunov time is

1
λ1

.

We easily conclude from the above definitions that, after n Lya-
punov times, the distance between nearby initial conditions is ex-
pected to grow by a factor en.

Lyapunov exponents computation

The estimation of the largest Lyapunov exponent is relatively straight-
forward: given an arbitrary vector v of norm 1,

L ≃ 1
T

log ∥X(T)v∥, T >> 0.

This is because an arbitrary vector will typically contain components
aligned with the direction of maximum growth, hence in the long
term it will align along this direction.

The computation of the full Lyapunov spectrum is a bit more com-
plex and relies on the following fact

Not all definitions of the QR decom-
position enforce positive diagonal
elements. Matlab implementation,
for example, does not. It is however
always possible to choose Q such that
R has positive diagonal elements.

♦ Theorem
Any real square matrix can be decomposed in the product QR of
two matrices, an orthogonal matrix Q and an upper triangular ma-
trix R with positive diagonal elements such that Rii ≥ R(i+1)(i+1).

♦ Theorem
Given the QR decomposition of matrix X(T), the product of the
first m elements Rii, 1 ≤ m ≤ n gives the area of a generic m-
dimensional unit cube Cm defined by the first m columns of the
identity matrix, under the linear transformation X(T)Cm.

In other words, the diagonal elements of R represent how fast an
m-dimensional cube, 1 ≤ m ≤ n, is stretched in different directions
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by the flow. This is precisely what we need to compute the Lyapunov
exponents.

♦ Theorem
For almost all coordinate choices, the Lyapunov exponents of f (x)
are given by

lim
t→∞

1
t

log Rii.

See (Geist, Parlitz, and Lauterborn,
1990) or (Dieci and Vleck, 2002) for
more information on the meaning of
’for almost all coordinate choices’.

In practice, the above computational method cannot be applied
as it is, because the ratios between the elements Rii diverge in time,
causing numerical problems. A more robust approach is to com-
pute the exponents as the average of the expansion rates of multiple
boxes of initial conditions, over a sequence of small time intervals, as
sketched in the following algorithm. By the definition of the fundamental

matrix X(T), when T = kτ we have

X(T) = XkXk−1 · · ·X1

where Xi is the fundamental matrix of
the orbit between times (i− 1)τ and iτ.
Remember that each fundamental ma-
trix in the above equation is computed
by solving a differential equation with
initial condition X(0) = I. By using
initial condition Y(0) = Qk−1 in the
algorithm, we obtain Yk = XkQk−1,
that is, Xk = YkQ−1

k−1. If we now
write Yk = QkRk , and put this in the
equation of X(T), we obtain

X(T) = QkRkQ−1
k−1Qk−1Rk−1Q−1

k−2 · · · R1

= QkRkRk−1 · · · R1.

This means that X(T) has for QR
factorization a matrix Q = Qk , and a
matrix R whose diagonal elements are
the products of the diagonal elements
of R1, . . . , Rk . This explains why line 9

in the algorithm produces a correct
estimate of the Lyapunov exponents
for large enough N.

■ Definition: numerical computation of the Lyapunov spectrum

1: choose N ≫ 1
2: define a small time interval τ

3: define Q0 = I
4: set t = 0
5: for k = 1 : N do
6: compute Y(τ) as solution of

Ẏ = J f (ϕt(x(kτ)))Y, Y(0) = Qk−1

7: compute Rk and Qk as QR decomposition of Y(τ).
8: end for
9: return λi =

1
Nτ ∑k log Rk,ii.

Example 52. The Lyapunov exponents of the Lorenz attractor, with stan-
dard parameters, are approximately 0.906, 0, and −14.572. The largest one
indicates that generic neighbouring initial conditions diverge as e0.906t, with
Lyapunov time 1

0.906 ≃ 1.1. If we take initial conditions that differ by 10−3

and integrate for 10 unit times, that is, about 9 Lyapunov times, we expect
the initial conditions to separate by a factor of about Note that, while the Lyapunov time

may accurately estimate divergence
of extremely near initial conditions,
the farther away they split the less
accurate is the estimate. For instance,
in this example, two solutions within
the attractor will never be split by
more than about 40 units, which is the
diameter of the attractor.

e9 ≃ 104.

Of course, while the speed of divergence is reasonably approximated by the
first Lyapunov exponent when the orbits of the two initial conditions are
very close, we are stretching the tool quite far in the above calculation.
Nevertheless, our estimate happens to work surprisingly well in the Lorenz
system. The following figure shows in green 4 initial conditions, at a dis-
tance of 10−3 from each other, and in red the corresponding states after
numerically integrating for 10 units of time.
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Lyapunov exponents of discrete-time systems

The discussion in the two previous sections holds, with minimal
changes, for discrete-time systems. The numerical computation of
the exponents is identical since, as we have seen even in continuous-
time systems it is reduced to the iteration of discrete-time steps.

Notice that the interval [0, 1] is not an
attractor, by our definition. Indeed,
if we take R as the host space, no
neighbourhood of [0, 1] is attracted
to [0, 1] asymptotically: the set is
invariant but not asymptotically stable.
It becomes a (chaotic) attractor if the
tent structure is repeated throughout
R.

Example 53. The tent map

x(t + 1) =

2x(t), x(t) ≤ 0.5,

2− 2x(t), x(t) > 0.5,

has
∥J f (x)∥ = 2, ∀x ̸= 0.5.

For an orbit not going through x = 0.5, we have

lim
t→∞

1
t

log 2t = log 2.

This is one of the few cases where the Lyapunov exponent can be computed
analytically.

Fractal geometry

We can now characterize the complexity of nonlinear dynamics in
terms of the Lyapunov exponents, and the ensuing sensitive depen-
dence on initial conditions of chaotic attractors. Another manifes-
tation of dynamic complexity, possibly even more pervasive than
chaos, is the fractal dimension of relevant objects, and namely of
attractors and basin boundaries. To discuss this we need to start
from a definition of dimension more general, and flexible, than the
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intuitive definition we have of 0, 1, 2-dimensional sets (points, lines,
surfaces,...). We find such a tool in the definition of measure and
dimension initially introduced by Felix Hausdorff in 1918.

■ Definition: Hausdorff measure of a set A
The Hausdorff measure of a set A in parameter d is

Hd(A) := lim inf
ϵ→0

∞

∑
i=1

diam(Bi(ϵ))
d,

where Bi(ϵ) are open sets of a diameter smaller than ϵ forming a
countable cover of A, and diam(·) is the diameter of an open set,
that is, the sup of the distance between arbitrary points in the set.

The Hausdorff measure of parameter d thus measures the speed
of growth in the number of elements Bi necessary to cover set A, as
their diameter, weighed by the power d, shrinks. We can intuitively
see how for large d the measure is 0 (the number of elements grows
slower than the d-th power of their diameter shrinks), while for small
enough d it goes to ∞. There is one special d that marks the transition
between these two limits, and that gives the Hausdorff dimension. The Hausdorff dimension and other

definitions of fractal dimension are
sometimes used to characterize the
complexity of a dataset, receiving
rather interesting interpretations.
For instance, Fuss and Niegl (2008)
used the Hausdorff dimension of the
force signal of a climber on a hold
to characterize athletic performance,
considering it as a proxy of how
precisely the climber interacts with the
climbing wall. Schubert et al. (2009)
and Melillo, Bracale, and Pecchia
(2011) used the correlation dimension
of the ECG signal, an alternative way
of measuring fractal dimension, to
measure stress.

■ Definition: Hausdorff dimension of a set A
The Hausdorff dimension of set A is

inf d : Hd(A) = 0.

The Hausdorff dimension is, in simpler words, the weight by
which we must weigh the diameters of the covering elements in order
to balance their increasing number. This generalizes the idea that, for
example, to cover a line the number of cover elements must increase
inversely to their diameter, while to cover a surface the number must
grow as the square of their diameter. The definition is however quite
involved, and not easy to apply in general. There exists a less rig-
orous definition, which provides incorrect results for some sets but
has the merit of having a simple implementation in numerous cases
of interest.

The Box-counting dimension can be
identically defined using spheres in-
stead of cubes. It is not mathematically
sound (e. g., it estimates d = 1 for the
countable set of the rationals in [0, 1])
and it is not the most efficient dimen-
sion to compute numerically, but it is
the simplest one to explain.

■ Definition: Box-counting dimension
Let S be a set in Rn, and N(ϵ) the number of n-dimensional cubes
of side ϵ necessary to cover S. The box-counting dimension of S is

lim
ϵ→0

log N(ϵ)

log 1
ϵ

.

Example 54 (Box-counting dimension of regular sets). Regular sets
have integer box-counting dimensions. Consider, for instance, a planar
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region of area A and a 3-dimensional region of volume V in R3. The number
of cubic boxes necessary to cover the planar region, for small ϵ is equal to
A
ϵ2 , hence

lim
ϵ→0

log N(ϵ)

log 1
ϵ

= lim
ϵ→0

log
(

A
ϵ2

)
log 1

ϵ

= lim
ϵ→0

log A + 2 log 1
ϵ

log 1
ϵ

= 2.

Similarly, The number of cubic boxes necessary to cover the 3-dimensional

region is proportional to
(

1
ϵ

)3
, hence

lim
ϵ→0

log N(ϵ)

log 1
ϵ

= lim
ϵ→0

log
(

V
ϵ3

)
log 1

ϵ

= lim
ϵ→0

log V + 3 log 1
ϵ

log 1
ϵ

= 3.

Many continuous-time chaotic at-
tractors have Poincaré maps that are
homeomorphic to a Cantor set.

■ Definition: Cantor set
The Cantor set is the subset of R obtained by taking the unit inter-
val, removing its central third, and then iteratively repeating the
operation on each of the obtained segments.

Example 55 (Box-counting dimension of the Cantor set). Let Sk be the
approximation of the Cantor set obtained by iterating k times the above pro-
cedure so that S0 is the unit interval, S1 the union of [0, 1/3] and [2/3, 1],
and so on.

The set Sk is covered by exactly 2k boxes of side ϵ = 1
3k . Taking ϵ → 0,

and simultaneously taking k→ ∞, we have

lim
ϵ→0

log N(ϵ)

log 1
ϵ

= lim
k→∞

log 2k

log 3k =
log 2
log 3

≃ 0.6309.

■ Definition: Koch curve
The Koch curve is obtained by taking the unit interval, substitut-
ing its central third with the two upper sides of an equilateral
triangle, and iterating the procedure on each of the sides of the
curve.

In the figure, the 6-th iteration in the
computation of the Koch curve.

Example 56 (Box-counting dimension of the Koch curve). Consider
the Koch curve in R2. For this example, it is easier to take a spherical cover.
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Call Kk the approximation of the Koch curve obtained after k iterations of the
generating algorithm, with K0 being the unit segment. The set is minimally
covered by 4k spheres of diameter 1

3k .
Defining ϵ = 1

3k , and taking k→ ∞, we have

d = lim
k→∞

log 4k

log 3k =
log 4
log 3

≃ 1.2619.

In this definition, box-counting, or
other dimensions can be used indiffer-
ently.

■ Definition: Fractal set
A fractal set is a set with non-integer dimension

This definition follows the convention
in (Meiss, 2007). Other references use
the term strange with slightly different
meanings.

■ Definition: Strange attractor
Attractors with fractal geometry are called strange attractors.

The Lorenz attractor, for instance, is believed to be fractal, and
therefore strange.

⋆ Notice that there exists attractors that are strange but not chaotic,
and chaotic attractors that are not strange.

Fractal geometry, however, does not come in the game of nonlinear
dynamics only when dealing with chaotic attractors. The boundary
of a basin of attraction can in fact be fractal, and this is possible even
for the simplest type of attractor: the stable equilibrium.

Example 57. Newton’s method for root finding consists of the iteration of
the discrete-time, nonlinear system

x(t + 1) = x(t)− J−1
f (x(t)) f (x(t)).

Consider the complex function f (z) = z3 − 1, which can be written as a
real vector-valued function

f (x) =

(
x3

1 − 3x1x2
2 − 1

3x2
1x2 − x3

2

)
.

The function has, of course, three roots equal to

(1, 0), (cos(2π/3), sin(2π/3)), (cos(4π/3), sin(4π/3)),

and each of these roots is an asymptotically stable fixed point of Newton’s
algorithm. If we attempt to find them using Newton’s method, however,
the one we converge to depends on our choice of initial conditions in a very
complex way: the boundary of the basins of attraction of the three fixed
points, corresponding to the three roots, are in fact fractal. This is evident
in the picture below, which represents in three different colours the root
towards which the initial conditions is attracted.
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An obvious consequence of the above observation is that decid-
ing precisely what perturbations in the state of a multi-stable system
may lead it to settle on a different attractor is, in general, a very hard
problem. Clearly, in the nonlinear setting, a Lyapunov function and
LaSalle’s invariance theorem can only provide a very rough under-
approximation of a generic basin of attraction.

In closing, note how the definitions of dimension introduced be-
fore are exclusively geometric. In applying them to the study of an
attractor, the attractor set must first be computed, and then its di-
mension must be calculated based on one or the other definition.
There exist however other definitions, more closely related to the dy-
namic nature of attractors. One that is not rigorously justified, but
very simple to implement, is the following.

■ Definition: Lyapunov dimension of an attractor
Consider an attractor with Lyapunov exponents λ1, λ2, . . ., in de-
creasing order. Its Lyapunov dimension is

k + ∑k
i=1 λi

|λk+1|
,

with

k := max

{
k :

k

∑
i=1

λi ≥ 0

}
.

The intuition behind this definition is that the (fractal) dimension
of the attractor is the dimension of volumes that neither grow nor
shrink under the effect of the attractor’s flow. In the defining for-
mula, k is the largest integer dimension of volumes that increase
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under the flow, while the fractional term approximates the fraction
of dimension missing to exactly balance growth and contraction.

Example 58. The tent map has only one Lyapunov exponent equal to log 2,
therefore it has dimension 1. The Lorenz attractor, with Lyapunov exponents
0.906, 0, and −14.572, is equal to 2 + 0.906

14.572 ≃ 2.06.

Exercises

Exercise 50

Consider the linear system

ẋ =

(
−1 0
0 2

)
x.

1. Take a square of initial conditions centred around the origin,
and draw how the square is transformed by the flow after
t = 1, 10, 100.

2. Is the area of the parallelogram increasing or decreasing?

3. What are the Lyapunov exponents of the equilibrium?

4. Consider an arbitrary planar polytope of initial conditions, not
necessarily including the origin. Does the area of the polytope
increase or decrease as t grows?

Exercise 51

Compute the Lyapunov exponents of all the orbits of the system

ẋ1 = x1 − x3
1,

ẋ2 = −x2.
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Exercise 52

Consider the following model

ẋ1 = x1 + x1x2 − tanh(x4
2) + x1x3

2 − 3,

ẋ2 = x2 − cos(x1x2) + x2
1x7

2.

Can the model have a chaotic attractor?

Exercise 53

We have seen in an exercise that the Lotka Volterra model admits
an infinite number of periodic orbits surrounding the positive equi-
librium. What are the Lyapunov exponents of these orbits?

Answer of exercise 53

The periodic orbits must have two 0 exponents: one coming from
the trivial Floquet multiplier, the second due to the fact that nearby
orbits are also periodic, therefore neighbouring initial conditions di-
verge at most polynomially in t (due to the growing phase differ-
ence).

* Exercise 54

Let
ẋ = Σ(x, p)

be a continuous-time model of a food chain in the parameter p. Let
p = p0 + g(w) with w solution of

ẇ = W(w),

where g(w) is the output of a nonlinear system evolving on a chaotic
attractor, modelling the chaotic variation of the parameter p due
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to the weather. The Lyapunov exponents of the only attractor of
Σ(x, p0) (the unperturbed food chain) are −2,−1, 0, while those of
the only attractor of W are −4, 0, 1. What can we say about the expo-
nents of the seasonally perturbed system

ẋ = Σ(x, p0 + g(w)),

ẇ = W(w)?

Answer of exercise 54

The dynamics of W does not depend on that of Σ, therefore the set
of exponents of any attractor of the aggregate system must contain
the exponents −4, 0, 1. The remaining exponents instead depend on
the coupling between W and Σ, but nothing can be said in general
about their value.

Exercise 55

A chaotic attractor has Lyapunov exponents {−4,−1, 0, 3}. What
is the Lyapunov time of the system?

Exercise 56

A nonlinear continuous-time system has a quasi-periodic attrac-
tor on an invariant 2-torus, that is, an invariant torus that is a 2-
dimensional manifold.

1. How many null Lyapunov exponents should we expect to see
for an orbit converging to the attractor?

2. What is the largest Lyapunov exponents of the attractor?

3. For a small parameter change the attractor becomes periodic
(it phase locks). How many null Lyapunov exponents should
we expect to see now?

Exercise 57

The Sierpinski carpet is obtained by taking the unit square, re-
moving a square of side 1

3 from its centre, then removing a square
of side 1

32 from the centre of the 8 remaining squares, and iterating.
Compute the box-counting dimension of the carpet.

Exercise 58

Consider the model ẋ = 4x2 − 10x + 6, defined in the interval
x ∈ [1, ∞), and the mapping y =

√
x− 1.
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1. Determine if the mapping is a homeomorphism or a diffeo-
morphism.

2. Write the model in the variable y.

3. Compute the Lyapunov exponent of the orbit with initial con-
dition x = 1.2, and that of the corresponding orbit in the y
variable.





Structural stability and bifurcations

Keywords: Structural stability, bifurcation, bifurcation diagram, saddle-node, fold, Hopf, period-
doubling, Neimark-Sacker

Structural stability

■ Definition: Structurally stable system
A system f (x, p), with parameters p ∈ Rq is structurally stable
if its flow is topologically equivalent to the flow of all systems
f (x, p′) with p′ in a neighbourhood of p.

Example 59. Consider the one-dimensional model

ẋ = −x +
x3

3
+ p,

whose vector field is depicted below for p = 0:

−2 0 2
−4

−2

0

2

4

x

f(
x)

The model has 3 equilibria when p = 0: two unstable ones in ±
√

3, and a
stable one in 0. By changing p we can move f (x) up and down, moving
its equilibria. If p is only slightly changed, the equilibria remain the same,
and we could formally prove that the flow remains topologically equivalent
to that with p = 0. It is structurally stable.

If we set p = 2
3 , however, we obtain the following vector field.
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−2 0 2
−4

−2

0

2

4

x

f(
x)

Now we only have 2 equilibria, an unstable one in −2, and a nonhyperbolic
one in 1. A small perturbation of p on either side will change the system
into one with 3 or 1 equilibria. The vector field f (x, 2/3) therefore is not
structurally stable.

Example 60 (Structural stability and robustness of a feedback con-
trol). Let us attempt to design a feedback control to stabilize the system

ẋ = x + u(1 + x) + d

around the origin, assuming a constant but unknown disturbance d. Pro-
ceeding as by standard linear systems theory, we can linearise at x = 0, u =

0 obtaining
ẋ = x + u,

which can be stabilized at the origin by choosing

u = −kx, k > 1.

Let us take, for example, k = 2.

ẋ = −x− 2x2 + d.

When d = 0, f (x) is

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

f(
x)

We see that the origin is indeed a stable equilibrium, as expected. This
equilibrium persists but is shifted right if the disturbance d has a positive
value. If however d < − 1

8 , the equilibrium collides with another, unstable
equilibrium, and disappears! The unlucky control engineer would end with
a system state drifting to −∞, for any initial condition.
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■ Definition: Bifurcation point
A bifurcation point is a point p̄ in parameter space where f (x, p)
is not structurally stable.

A bifurcation, according to the above definition, is a phenomenon
related to the whole phase space. In practice, however, we are fre-
quently interested in the behaviour of a system near one of its attrac-
tors. In this case, we look for bifurcations only within its neighbour-
hood. In Example 59, for instance, we can observe that the bifurca-
tions involve only the two equilibria at a time. We can effectively
reduce the problem of studying each one of the two bifurcations in
Example 59 to that of studying the behaviour of a simpler second-
order system.

Example 61 (Saddle-node bifurcation of an equilibrium). For param-
eter values close to the bifurcation point, the flow in Example 59 near the
rightmost or the leftmost pair of equilibria is locally topologically equivalent
to that of the family

ẋ = x2 + p,

for p near 0.

−2 0 2
−4

−2

0

2

4

x

f(
x)
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−4

−2
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x

■ Definition: Bifurcation set
The bifurcation set is the set of bifurcation points in parameter
space.

■ Definition: Codimension of the bifurcation set
A bifurcation set is of codimension k if it is locally an m-
dimensional manifold in n parameters, with n−m = k.

⋆ From a different point of view, we may view the codimension of
the bifurcation set as the number of equations in the n parameters
that are needed to define the set.

Example 62. Consider the 2-parameter family of systems

ẋ = p1x2 + p2.

If p1 > 0, the system has 2 equilibria when p2 < 0, and no equilibria
when p2 > 0. If p1 < 0 the two equilibria exist when p2 > 0 and no
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equilibria exist for p2 < 0. When p1 = 0 the system has infinitely many or
no equilibria, depending on p2. Overall, the curves p1 = 0 and p2 = 0 in
the (p1, p2) plane are codimension-1 bifurcation sets.

Example 63. Consider the 2-parameter family of systems

ẋ =
x3

3
− p1x− p2.

For small p2 and p1 > 0 it has 3 equilibria, two of which collide and then
disappear as p2 changes. This happens at parameter values for which f (x)
is tangent to the horizontal axis. We can identify the bifurcation set by
solving

∂

∂x

(
x3

3
− p1x− p2

)
= x2 − p1 = 0⇒ x = ±√p1,

and then solving(
x3

3
− p1x− p2

)∣∣∣∣
x=±√p1

= ∓2p
3
2
1

3
− p2 = 0⇒ p2 = ∓2p

3
2
1

3
.

This is a codimension-1 bifurcation set. Notice that it contains, as a subset,
the codimension-2 bifurcation set p1 = p2 = 0, where all three equilibria
coincide.

■ Definition: 1-parameter bifurcation diagram
A 1-parameter bifurcation diagram is a plot of a system’s equilib-
ria [or limit cycles] against a parameter p in the (xi, p) plane [or
(xi, xj, p) space, for cycles].

Example 64. Consider again the family of systems

ẋ = x2 + p,

Its 1-parameter bifurcation diagram is

−4 −2 0
−4

−2

0

2

4

p

x

■ Definition: 2-parameter bifurcation diagram
A 2-parameter bifurcation diagram is a plot of the bifurcation set
of a system in a parameter plane.

A codimension-1 bifurcation set in the
plane is, for example, a curve.
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Example 65. Consider again the 2-parameter family of systems

ẋ =
x3

3
− p1x− p2.

Its 2-parameter bifurcation diagram is

0 2 4
−4

−2

0

2

4

3 equilibria

1 equilibrium

p1

p 2

Notice how the bifurcation set is a smooth manifold, except at the codimension-
2 bifurcation in (0, 0).

The definition of bifurcation, and the fact that topologically equiv-
alent flows have corresponding invariant sets, implies that a bifurca-
tion must occur any time two invariant sets of a system collide at the
change of a parameter. This is by no means a rigorous definition, but
many of the most common and interesting bifurcations can indeed
be thought of as collisions of equilibria, cycles, and other familiar
objects.

A different set of bifurcations, called
global bifurcations, happen when the
stable and unstable manifolds of sad-
dle equilibria or cycles collide. These
are called homoclinic bifurcations
(connections between invariant man-
ifolds of the same equilibrium/cycle)
or heteroclinic bifurcations (connec-
tions between invariant manifolds of
different equilibria/cycles)

⋆ Bifurcations as collisions
A collision of cycles or equilibria when a parameter changes is a
bifurcation.

While the above remark helps us visualize bifurcations, it does not
provide a very useful means for their numerical study. A more prac-
tical set of tools comes as a consequence of the Hartman-Großman
theorem, and the observation we did in an earlier exercise, that flows
near linear equilibria with the same number of stable and unstable
eigenvalues are locally topologically equivalent, irrespective of the
type of the equilibria. These two results, together, tell us that noth-
ing special can happen near an equilibrium, as long as it remains
hyperbolic. We must look for bifurcations in nonhyperbolic equilib-
ria.

Homoclinic and heteroclinic bifur-
cations escape this rule, as nothing
special happens to the equilibrium or
cycle itself.

⋆ Bifurcations as loss of hyperbolicity
Bifurcations of a small neighbourhood of an equilibrium occur at
parameter values where the equilibrium becomes non-hyperbolic.
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A second important tool then comes from the centre manifold the-
orem, which tells us that the hyperbolic eigenvectors of a nonhyper-
bolic equilibrium identify manifolds (the stable and unstable ones)
where, again, nothing special can happen. Therefore, all the inter-
esting phenomena we can expect from a bifurcation must happen
within the centre manifold. This is very good news since the cen-
tre manifold has a dimension equal to the number of nonhyperbolic
eigenvalues. In the most common cases, this is 1 or 2.

Topological normal forms

We are now ready to start our systematic study of the most com-
mon codimension-1 local bifurcations. We have already seen what
codimension-1 means. The adjective ’local’ means that the bifurca-
tion is related to a loss of structural stability in the neighbourhood
of an equilibrium or a fixed point. In other words, it is a loss of local
topological equivalence between the flow of f (x̄, p̄), and the flow of
f (x̄, p), for all p near p̄.

When possible, we will discuss these bifurcations through the
analysis of their topological normal forms. These are a third type of
normal form, on top of the two seen previously. Let us introduce
topological normal forms for continuous-time systems, leaving the
obvious extension to discrete-time systems to the reader.

■ Definition: Topological normal form
System

ẋ = f (x, p) or x(t + 1) = f (x(t), p)

is a topological normal form for a bifurcation of an equilibrium or
fixed point x̄ satisfying a set of bifurcation conditions at p = 0 if all
the systems that satisfy the same set of conditions have flows that
are locally topologically equivalent, near x̄, to the flow of f (x, p).

Constructing topological normal forms is not an easy task, in gen-
eral, and is an open problem even in one of the cases we see in our
very limited foray into the topic. The procedure is however quite
straightforward in principle:

1. A set of conditions on the eigenvalues of the equilibrium or fixed
point x̄ and on the coefficients of the vector field at (x = x̄, p = 0)
is defined (the bifurcation conditions).

2. The Poincaré normal form of f (x, p) near x = x̄ is computed up
to a suitable order

3. It is proved that the flow of the truncated normal form is locally
topologically equivalent to the flow of any non-truncated normal
form with the same coefficients.

The normal forms we will see are therefore truncated Poincaré nor-
mal forms, with the added property that, in a neighbourhood of x̄,
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the tail of the expansion of the Poincaré normal form is irrelevant for
the topology of the flow. The terms that appear in the normal forms
are, consequently, the resonant terms of all flows with the same bi-
furcation conditions.

The saddle-node bifurcation

Consider an equilibrium x̄ of a continuous-time system ẋ = f (x, p).

■ Definition: Saddle-node bifurcation
A saddle-node of f (x, p) at the equilibrium x̄ occurs at parameter
values where the Jacobian J f (x̄, p) has a single 0 eigenvalue.

The corresponding centre manifold is therefore 1-dimensional. As-
sume, without loss of generality, that the saddle-node occurs at x̄ =

0, p = 0. Call f1(x1, p), with x1 ∈ R, p ∈ R, the 1-dimensional
dynamics in the centre manifold. We have the following.

For (many!) more details on the
normal forms of this and other bifurca-
tions, see (Kuznetsov, 2004)

♦ Theorem: the normal form of a generic saddle-node
Assume that ∂2

∂x2
1

f1(0, 0) ̸= 0 and ∂
∂p f1(0, 0) ̸= 0. The flow in the

centre manifold is locally topologically equivalent to the flow of

ẋ1 = p± x2
1.

Let us look at the dynamics of this normal form, for instance for
the system ẋ1 = p + x2

1 .

In the diagram, the dashed line indi-
cates the unstable equilibrium, and the
solid line the stable one.

−2 −1 0 1
−2
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p

x

1-parameter bifurcation diagram of the saddle-node

As p crosses 0 a stable node (below) and an unstable node (above)
collide, and disappear for p > 0. Remember that, in general, this
is what happens in the 1-dimensional centre manifold of a higher-
dimensional equilibrium. Therefore in general we should expect to
see an equilibrium with ns stable eigenvalues and nu unstable eigen-
values collide with one that has ns − 1 stable eigenvalues and nu + 1
unstable ones (this justifies the name saddle-node).
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The theorem above tells us that, under some genericity conditions,
the equation

det J f (x̄, p) = 0

defines a saddle-node bifurcation set. Since this is a single scalar
equation, the corresponding set is typically a codimension 1 set (an
(n− 1)-dimensional surface in the space of n parameters).

If we imagine moving along the codimension-1 bifurcation sets,
we should expect to cross, occasionally, codimension-2 bifurcation
points where one of the genericity conditions is violated. The cor-
responding codimension-2 bifurcations can themselves be unfolded,
providing a normal form that is valid assuming further genericity
conditions. Without going too deep into the details, at least for
the case of the saddle-node it is worth looking at the two classes of
codimension-2 bifurcations that happen to violate the two genericity
conditions seen above.

Let us start by observing what happens when the first genericity
condition, on the quadratic tangency of f1(x, 0) with the horizontal
axis, is violated.

⋆ The cusp bifurcation
If the condition ∂2

∂x2
1

f1(0, 0) ̸= 0 is violated, then f1(x1, 0) is cu-

bically tangent to x1 = 0. The corresponding bifurcation is
a codimension-2 bifurcation, called cusp, where two different
saddle-node curves merge tangentially. We have seen the bifur-
cation diagram before:
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In some neighbourhood of the codimension-2 point, there must
exist not 2 but 3 equilibria!

We may gain some further intuition about the geometry of the
above bifurcation diagram if we imagine plotting the locus of the
equilibria of a system of the form

ẋ = x3 − p1x− p2

in the space (x, p1, p2):
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The locus is the yellow surface. If we imagine tracing a line in the
x direction from the parameter pair p corresponding to the red dot,
we cross the surface thrice: we have 3 equilibria. If instead, we start
from the blue dot, we only cross the surface once: 1 equilibrium.
The transition between these two scenarios, which is caused by the
two folds of the surface, appears in the (p1, p2) plane as the cusp
bifurcation diagram above.

Let us now observe what happens when the second genericity
condition, on the dependence of f1(0, p) on p, is violated.

⋆ The transcritical bifurcation
If the condition ∂

∂p f1(x̄1(p), p) ̸= 0 is violated, then f1(x1, p) de-
fines a parabola that touches the horizontal axis for p = 0, but
bounces back as p crosses 0. The corresponding bifurcation, called
transcritical bifurcation, involves two equilibria that exist on either
side of the bifurcation point and collide at the bifurcation point,
exchanging stability through the bifurcation:
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The transcritical appears to be a
codimension-2 bifurcation since it
occurs as a consequence of two equal-
ity conditions: J f1 (0, 0) = 0 and
∂ f1(0, 0)/∂p = 0. This is, however,
not entirely correct. Given an arbitrary
one-dimensional system ẋ = f (x, p),
consider arbitrary polynomial pertur-
bations to the system, expressed as
countably many parameters p1, p2, . . ..
Assume that an equilibrium of the
system satisfies the conditions for the
transcritical bifurcation ∂ f /∂pi = 0
for a given pi . This does not mean that
the same condition will be satisfied
for a different choice of parameters.
In other words, from this point of
view, the transcritical bifurcation is
nothing more than the portrait seen
while following a path in parameter
plane (p1, p2) which happens to touch
a generic saddle-node curve tangen-
tially, for example following the path
{p1 = p2} in the following diagram.
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A different path in parameter space
would classify the same bifurcation
point as a regular codimension-1
saddle-node (SN, solid black curve).

We may see an example of a transcritical bifurcation if we lower
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the carrying capacity (the coefficient 1/4 in the logistic model of the
prey) in Example 17. This shifts the diagonal nullclines down, and
eventually, the strictly positive equilibrium collides with the equilib-
rium on the x1 axis, in a transcritical bifurcation.

Notice that, in this case, the bifurcation happens as we change a
single parameter, and will keep happening (maybe for slightly dif-
ferent parameter values) even if we change all other parameters in
the system. In other words, it appears to be a codimension-1 bifurca-
tion. This has do to the special structure of the prey-predator model,
and is not entirely unexpected: the particular algebraic structure of
many mathematical models makes generic (i.e., codimension-1) bi-
furcations which are non generic (i.e., with codimension higher than
1) in the world of arbitrary dynamical systems.

Saddle-nodes, bistability, and hysteresis

The cusp structure seen above is just one of many, common exam-
ples of multistability in nonlinear systems. A multistable system
has more than one attractor, and its asymptotic behaviour depends
on the initial conditions. What makes the cusp structure (and other
similar ones) particularly interesting is that the system may lose one
or the other of the two attractors when parameters change. It can
exhibit, in other words, a hysteretic behaviour. With specific refer-
ence to the cusp in the above figure, if p1 is positive, and p2 repre-
sents a slowly changing quantity that oscillates around 0, we may
observe the system settling onto one of the two stable equilibria, and
the suddenly jumping onto the other equilibrium when parameters
cross both of the saddle-node curves, only to come back to the first
equilibrium as parameters cross the two curves the other way.

Hysteresis is sometimes an unwanted, even tragic phenomenon in
natural systems. For example, in some models describing the inter-
action between ocean water temperature and polar ice cover the state
can tip from an equilibrium where temperature is on average colder
and it is kept cool by albedo due to polar ice, to a much warmer
one, where polar ice essentially disappears. Due to hysteresis, once
the system is on the ‘warmer’ equilibrium it can only transition back
to the first equilibrium through a large perturbation of parameters.
In other systems, hysteresis has a welcome effect. In thermostats,
for instance, it is often introduced on purpose in order to avoid the
thermal controller switching on and off too quickly.

Let us have a more formal look at hysteresis:

■ Definition: Bistability
A bistable system is a system with two attractors.

We may imagine a system with two equilibria, even though, in
principle, the two attractors can be anything.
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■ Definition: Hysteresis
A system whose parameters change slowly in time is said to ex-
hibit hysteresis if its steady state depends on the history of its
parameters, and not just their value.

Imagine, at first, that we have a system with three equilibria, two
of which are stable (call them s1 and s2), and one is unstable (call it
u), and the system depends on a parameter p. When p crosses 1 from
below, the unstable equilibrium collides with s1 in a saddle-node,
and after the saddle-node, the remaining equilibrium (s2) becomes
GAS.

For p > 1, we expect the system to settle more or less quickly onto
s2. If we now decrease p below 1, however, the system will stay on
s2, even if it was on s1, before!.

Imagine now that the same structure repeats, symmetrically, when
p crosses −1 from above: now s2 collides with u. If we follow p
in and out of the interval [−1, 1], we observe the system suddenly
transitioning between the equilibria s1 and s2, in a hysteretic loop.
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Hysteretic loop

The cusp structure is of course not the only possible explanation
of a hysteretic behaviour. Many of the bifurcations that we will en-
counter in the following can be combined in a multistable system
to give rise to hysteretic phenomena. In some systems, like models
of ferromagnetic materials, hysteresis appears as an even more com-
plex phenomenon. In many cases, however, a hysteretic behaviour
hints to the existence of a bifurcation structure such as the cusp, and
knowledge of this can help in decoding the system dynamics.

The fold bifurcation
Here a note on terminology is due.
The fold and the saddle-node are so
tightly linked that often the two names
are used interchangeably. Here, we are
using the name saddle-node to refer
to the bifurcations of equilibria and
fold to refer to the bifurcation of fixed
points and limit cycles.

The saddle-node bifurcation of continuous-time equilibria has a close
relative in the fold bifurcation of fixed points.

Along the lines of what we before, consider a fixed point x̄ of a
discrete-time system x(t + 1) = f (x, p).
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■ Definition: Fold bifurcation
A fold of f (x, p) at the fixed point x̄ occurs at parameter values
where the Jacobian J f (x̄, p) has a single 1 eigenvalue.

The corresponding centre manifold is therefore 1-dimensional. As-
sume, without loss of generality, that the fold occurs at x̄ = 0, p = 0,
and call f1(x1, p), with x1 ∈ R, p ∈ R, the 1-dimensional dynamics
in the centre manifold. We have the following.

♦ Theorem: the normal form of a generic fold
Assume that ∂2

∂x2
1

f1(0, 0) ̸= 0 and ∂
∂p f1(0, 0) ̸= 0. The flow in the

centre manifold is locally topologically equivalent to the flow of

x1(t + 1) = p + x1(t)± x2
1(t).

We have seen before that any continuous-time system induces, in
the neighbourhood of a limit cycle, a discrete-time system with an
equilibrium corresponding to the limit cycle. The above theorem
gives us conditions on the Poincaré map of the limit cycle: the cycle
undergoes a generic fold bifurcation whenever one of its nontrivial
Floquet multipliers crosses the unit circle at 1.

Example 66. Let us consider a translated logistic map

x(t + 1) = 4x(t)(1− x(t)) + p.

For p < − 9
16 , the system has no fixed points, while for p > − 9

16 it has two
fixed points, in

x =
3±

√
9 + 16p
8

.
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At the bifurcation point p = − 9
16 the equilibrium x = 3

8 has Jacobian

J f

(
3
8

)
= 4− 8

3
8
= 1,

with
∂2

∂x2 f = −8 ̸= 0,

and
∂

∂p
f = 1 ̸= 0.
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The system has a generic fold bifurcation at p = − 9
16 , and near p = − 9

16
its flow is locally topologically equivalent to that of

x1(t + 1) = p + x1(t)− x2
1(t).

Notice that the eigenvalue of the rightmost equilibrium, which is initially
≃ 1, crosses through −1 as p increases. This is a second bifurcation, called
period-doubling. We will see it later in this chapter.

Example 67. Let us try to imagine how the fold bifurcation appears when
it happens to the fixed points of the Poincaré map of a cycle. For some pa-
rameter value p < p′, a stable limit cycle (blue) and an unstable limit cycle
(red) coexist. As p → p′, the corresponding fixed points on the Poincaré
map approach each other quadratically, and so do the cycles. At p′ the two
cycles collide and disappear as p > p′.

The Hopf bifurcation

Consider a system f (x, p), having an equilibrium x̄ with two com-
plex conjugate eigenvalues a(p)± ib(p).

■ Definition: Hopf bifurcation
A Hopf of f (x, p) at the equilibrium point x̄ occurs at parame-
ter values where the Jacobian J f (x̄, p) has two purely imaginary
eigenvalues.

Assume, without loss of generality, that the Hopf occurs at x̄ = 0,
p = 0.
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♦ Theorem: the normal form of a generic Hopf
Assume that, when p = 0, l1(p) ̸= 0 and ∂

∂p a(p) ̸= 0. The flow in
the centre manifold is locally topologically equivalent to the flow
of (

ẋ1

ẋ2

)
=

(
β −1
1 β

)(
x1

x2

)
+ σ(x2

1 + x2
2)

(
x1

x2

)
,

where β := a(p)
b(p) , and σ = sgn(l1(0)) = ±1.

The function l1(p), which appears
in the theorem, is a function of the
system’s parameters known as the first
Lyapunov coefficient. After writing the
planar system as a complex system
ż = λz + g(z, z∗, p), z ∈ C, where z∗ is
the complex conjugate of z, we have

l1(0) :=
1

2ω2
0
ℜ (ig20g11 + ω0g21)

where ω0 = ℑ(λ) and gij are the

coefficients of the terms
gij
i!j! zi(z∗)j

in the Taylor expansion of g. See
(Kuznetsov, 2004) for more details.

Let us see how this normal form behaves near p = 0. First, notice
that the eigenvalues of the linearisation of the above normal form are

β± i,

so they cross the imaginary axis when those of J f do. If we now
take σ = +1, and let β change between −1 and +1, we obtain the
following phase portrait
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For β = −1, the stable focus is surrounded by an unstable limit cycle.
This shrinks around the focus, with a radius equal to

√
−β, leaving

an unstable focus for β > 0.
If instead we take σ = −1 we have the following portrait.
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Now the limit cycle, with radius
√

β, exists for β > 0, and it is stable.
The first case (σ = +1) is called the subcritical Hopf bifurcation. The
second case is the supercritical Hopf bifurcation.

The value of sigma is determined by the sign of l1(p):

σ := sgn(l1(p)).
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Example 68 (Catastrophic bifurcation). There is a significant difference
in the behaviour we can observe from a system undergoing a subcritical or
a supercritical Hopf bifurcation, as a parameter is slowly changed.

Imagine to be observing a system f (x, p) whose state has settled on one
of its stable equilibria, and that this equilibrium, due to a slow change of a
parameter, approaches a Hopf bifurcation. If this bifurcation is supercritical,
we should expect to see the asymptotic behaviour of the system turning
from a steady state to a small oscillation (the stable limit cycle). Should the
parameter then reverse its drift, the state will go back to a steady value.

If, on the contrary, the bifurcation is subcritical, after the bifurcation
no attractor is left in a neighbourhood of the equilibrium. The state will
likely drift away to some other region of the phase space, possibly far away,
in what is sometimes termed a catastrophe, that is, a sudden large change
in the state due to an infinitesimal change in a parameter. Restoring the
original value of the parameter will not, in general, bring the state back to
its original value.

The period-doubling bifurcation

Having seen what happens in discrete-time systems as a single eigen-
value crosses the unit circle at 1 (the fold bifurcation), we now inves-
tigate the effect of a single eigenvalue crossing the unit circle at −1.

■ Definition: Period-doubling bifurcation
A period-doubling of f (x, p) at the fixed point x̄ occurs at param-
eter values where the Jacobian J f (x̄, p) has an eigenvalue equal to
−1.

Assume, without loss of generality, that the period-doubling oc-
curs at x̄ = 0, p = 0, and let f1(x1, p), with x1 ∈ R, p ∈ R, be the
1-dimensional dynamics in the centre manifold. We have the follow-
ing.

♦ Theorem: the normal form of a generic period-doubling
Assume that

1
2

(
∂2

∂x2
1

f1(0, 0)

)2

+
1
3

∂3

∂x3
1

f1(0, 0) ̸= 0

and
∂2

∂x1∂p
f1(0, 0) ̸= 0.

The flow in the centre manifold is locally topologically equivalent
to the flow of

x1(t + 1) = −(1 + β)x1 + cx3
1,

with β(p) = 0 for p = 0, sgn(β) = sgn(p), and c = ±1.

Let us see how this map behaves near p = 0 with c = +1. We
easily see that the map has a fixed point at x1 = 0, for all values of p,
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and that this point becomes unstable when p > 0, while it is stable
for p < 0. Let us now look at a plot of the second iterate of the map:

−0.5 0 0.5

−0.5

0

0.5

x(t)

x(
t+

2)

β = −0.2

−0.5 0 0.5

−0.5

0

0.5

x(t)

β = 0.2

The map has a single fixed point for β < 0, which corresponds to the
fixed point of the first iterate. However, for β > 0, two more fixed
points appear, symmetrically around x = 0. We can understand the
behaviour at these points by looking at an iteration of the first iterate
map (the second iterate is reported in grey for reference).
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We would have found a similar scenario if we considered the case
c = −1, with the only difference that the period-2 fixed point would
have been unstable, coexisting with the stable period-1 fixed point.
The period-doubling bifurcation is of course found also when a mul-
tiplier of a limit cycle crosses the unit circle at −1. If the bifurcating
cycle is a stable one, at the bifurcation we expect the cycle to change
stability, while it collides with a stable or unstable cycle twice its pe-
riod. The stability of the double-period cycle depends on the sign of
parameter c in the normal form.

Example 69 (Mass-spring-damper with nonlinear spring). Let us look
once again at the periodically forced mass-spring-damper model that we saw
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at the beginning of the course.

ẋ1 = x2,

ẋ2 = −x1(1 + 10x2
1)− x2 + A sin(2πt).

We had already observed how, for A going from 400 to 450, the attractor
exhibits a subharmonic of the forcing function.
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The following plot shows the nontrivial multipliers of the stable limit cycle
found at A = 400, as a function of A.
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We can see that, at A = 405.93, one of the multipliers crosses the unit circle
at −1, triggering a period-doubling bifurcation. The limit cycle is unstable
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for larger values of A: the object that we observed in the simulation above
for A = 450 is not this cycle, but the double-period one that is born at the
bifurcation.

Example 70 (period-doubling in 3D). Let us see what a period-doubling
of a limit cycle looks like in a 3-dimensional continuous-time time-invariant
system. In the Poincaré map a fixed point, which we may assume stable,
becomes a saddle as a period-2 discrete-time stable cycle appears. Each one
of these objects corresponds to a limit cycle in the continuous-time system:

The unstable manifold of the saddle
cycle in this example is a Möbius strip,
can you explain why?

Before the bifurcation, we have the stable cycle (blue, on the left). After the
bifurcation, the cycle has become saddle (red), while a stable cycle twice the
original length is born.

After the period-doubling, stable and unstable manifolds of the saddle
cycle appear as follows (saddle cycle in red, stable cycle in light blue, stable
and unstable manifolds of the saddle in blue and orange, respectively)

The Neimark-Sacker bifurcation

We already discussed what happens when, in a map, the eigenval-
ues of a fixed point cross the unit circle at +1 (the fold) or at −1
(the period-doubling). The obvious next step is to see what happens
when a pair of eigenvalues crosses the unit circle anywhere except at
these two points.

This is the last bifurcation scenario that we will see in this course
and belongs by right of its codimension to the set of the most com-
mon codimension-1 bifurcations that we have seen so far. However,
the complexity of its analysis and bifurcation diagram puts it on a
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completely different level, so much so that a normal form, in its
precise acceptation, is not known, because no known change of vari-
ables can cancel the higher-order terms, and even a careful study of
the truncated normal form is beyond the scope of our discussion.

Rather than going into the details of the dynamics near the Neimark-
Sacker bifurcation, we will here give its definition, and discuss some
of the more apparent qualitative features that are typically found
near this bifurcation.

■ Definition: Neimark-Sacker bifurcation
A Neimark-Sacker of f (x, p) at the fixed point x̄ occurs at param-
eter values where the Jacobian J f (x̄, p) has two eigenvalues on the
unit circle, not in ±1.

Just like at a Hopf bifurcation, a periodic orbit bifurcates from
the equilibrium, at a Neimark-Sacker bifurcation an invariant circle
springs out of the fixed point.

Let us consider the supercritical scenario, where a stable fixed point
transforms into an unstable fixed point plus a stable invariant circle.
The subcritical scenario is obtained as usual by swapping stability.
Let p be the bifurcation parameter and p = 0 the bifurcation point,
and assume that we have the stable fixed point for p < 0 with two
eigenvalues approaching the unit circle as p→ 0, as in the left panel
in the figure below.

As p crosses 0, the fixed point becomes unstable and, if a set of
genericity conditions are satisfied, the stable invariant circle emerges
around the fixed point.

The dynamics within this circle is decided by the imaginary part
of the eigenvalues at p = 0. If it is an irrational multiple of π, as
in the centre panel in the figure below, then the circle (yellow in the
figure) is densely covered by an infinitely long orbit. If instead, it is
a rational multiple of π, as in the right panel in the figure, then the
circle contains a stable and an unstable periodic orbit (the blue and
green sets of points), and the rest of the circle consists of the unstable
manifold of the unstable periodic orbit.

Now let us imagine how the above picture translates if the discrete-
time system is the Poincaré map of a continuous-time system around
a cycle. Then, each fixed point becomes a cycle, while the invari-
ant circle corresponds to an invariant torus densely covered by a
quasiperiodic orbit or by the unstable manifold of the unstable limit
cycle.
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The dynamics past the bifurcation is however much more complex
than one may think from the simplistic description above. Let us get
a glance at this complexity while remaining in the continuous-time
framework.

We have seen how a pair of limit cycles exist on the torus near
bifurcation points where eigenvalues have rational imaginary parts.
If we assume, as is usually the case, that the eigenvalues change con-
tinuously along the Neimark-Sacker bifurcation, we should expect to
encounter infinitely many points along the bifurcation curve where
such a condition is satisfied, one for each rational number along the
real line. These cycles typically persist beyond the Neimark-Sacker,
and exist within a region shaped like a thin wedge, bounded on two
sides by two-fold bifurcations.

As rational numbers are dense along the real line, these wedges,
known as Arnold tongues, are typically dense and overlap. Beyond
the Neimark-Sacker, therefore, there are typically multiple coexist-
ing stable and unstable cycles, that interact in extremely complex
ways through multiple further bifurcations and may, and typically
do, eventually lead to the birth of a chaotic attractor.

In the picture above, for example, the stable blue cycle (lower left)
has a Neimark-Sacker (NS) bifurcation.

Figure 5: A 2-parameter bifurcation
diagram from (Colombo and Rinaldi,
2008). At the lower end of the di-
agram, we can clearly see a set of
Arnold tongues, emerging from the
horizontal axis. In the upper part of
the diagram, the dynamics is chaotic.
For the sake of completeness, we
should note that, even though this
figure displays the typical character-
istics of a bifurcation diagram near
a Neimark-Sacker, it comes from a
nonsmooth model.

Shortly after the bifurcation the cycle has changed stability (it is
now red) and is surrounded by an invariant torus (yellow) densely
covered by a stable orbit (blue). Within an Arnold Tongue (the or-
ange one, for example), the invariant torus still exists, but is wrapped
within a stable (blue) and unstable (green) cycle. The torus itself
consists of the unstable manifold of the green unstable cycle. At a
point where multiple Arnold tongues overlap (top left) there is no
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longer any invariant torus (you can see orbits crossing through the
former invariant torus), and multiple cycles coexist, typically within
a chaotic attractor.

Numerical continuation

The normal forms that we have seen in the sections above give us
a very precise, yet general picture of the unfolding of all the most
common bifurcation, that is, of the phase portrait of a system near
the bifurcating equilibrium, fixed point, or limit cycle, for parameters
close to the bifurcation parameters. They would however be of lim-
ited use in practice, without efficient computational tools to find the
bifurcations and analyse the normal form conditions in real-world
models. Luckily, such tools exist. The main ingredient in most cases
is a procedure to follow, as parameters are changed, a given geo-
metric object (equilibrium, fixed point, cycle), with given additional
conditions (e.g. an equilibrium with one eigenvalue equal to 0): this is
called numerical continuation.

To understand what it is, let us consider the simple case of the
2-parameter unfolding of a saddle-node.

Example 71 (Numerical continuation of a saddle-node bifurcation).
Consider an arbitrary system

ẋ = f (x, p), x ∈ Rn, p ∈ R2.

The equations

f (x, p) = 0,

det J f (x) = 0,

define the saddle-node bifurcation set, in Rn+2. Assume that (x0, p0) is one
such bifurcation points, and let us rewrite the above system as

F(y) = 0, y := (x, p), y0 := (x0, p0).

The Jacobian JF(x0, p0) has n + 1 rows (n from f , 1 from det J f ) and n + 2
columns, therefore there exists a vector v such that

JF(x0, p0)v0 = 0.

This vector is tangent to the bifurcation set at (x0, p0), and is typically
unique up to rescaling (in fact, it is unique as long as the conditions for the
normal form of a generic saddle-node are satisfied). We can continue the
bifurcation set by taking our next guess

ỹ1 := y0 + v0.

If we chose the norm ∥v0∥ sufficiently small, ỹ1 should be close to a root of
F(y) = 0. To find the correct value of y1 we can use Newton’s method, Newton’s method is an iterative

method to solve F(y) = 0, starting
from an initial guess y(0), by iterating

y(k + 1) = y(k)− J−1
F (y(k))F(y(k)).

which however requires n + 2 equations for a system of n + 2 unknowns.
The additional equation, which we must add, defines the surface on which
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we want our correction to be. A common choice is the pseudo-arclength
continuation, which constrains the Newton correction to be in a plane that
is orthogonal to v0. We therefore seek a zero in the variable y1 of

F(y1) = 0,

(y0 + v0 − y1)
⊤v0 = 0.

By repeating this procedure, we can construct the saddle-node bifurcation
set point by point.

In the above example, we have sketched the simplest implemen-
tation of a numerical continuation scheme to reconstruct the saddle-
node bifurcation set. In practice, for improved numerical efficiency
and stability, slightly different schemes are typically used. The strat-
egy is however the same. Also, it is worth noticing that the steps we
have followed are not specific to the continuation of the saddle-node.
I we substitute F(y) with a system of equations defining a hyper-
bolic equilibrium, or an equilibrium undergoing a different type of
bifurcation, we can follow the exact same steps to follow that object
through the parameter space.

■ Definition: Numerical continuation
Given a system

F(y) = 0, F : Rn+1 → Rn,

the set
y : F(y) = 0

is one-dimensional, and can be numerically computed in Rn+1 by
iteratively solving through Newton’s method in the variable yk+1

the system

F(yk+1) = 0,

((yk + vk)− yk+1)
⊤vk = 0,

where vk is a vector such that

JF(yk)vk = 0, vk ̸= 0,

and the initial guess for yk+1 is yk+1 = yk + vk.

The above strategy is typically used to plot 2-parameter bifur-
cation diagrams, as the projection in the (p1, p2)-plane of the set
{x, p : F(x, p) = 0}.

Exercises

Exercise 59

The following logistic model represents the dynamics of an animal
species with harvesting

ẋ = 2x
(

1− x
2

)
− p
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as a function of the harvesting effort p. Here, p represents harvesting
of the species x, and the model only makes sense for x > 0, since
once x = 0 constant harvesting is no longer meaningful.

Study stability and bifurcations of all equilibria.

Exercise 60

Explain why a limit cycle in a planar continuously differentiable
system cannot have a multiplier equal to −1.

Exercise 61

Identify all codimension-1 bifurcations of equilibria in the system

ẋ1 = x2
1 + x2 − x1 + d,

ẋ2 = −x1 − 4x2,

when parameter d changes in R. (You don’t need to check if the
bifurcations are degenerate)

Answer of exercise 61

We can start by identifying the equilibria, for instance using null-
clines.

The x1 nullcline is the parabola x2 = x1− x2
1 + d, while the x2 null-

cline is the straight line 4x2 = −x1. Since d shifts the parabola up and
down, and the parabola is facing down, we can expect two equilibria
when d is sufficiently large, disappearing through a saddle-node as
d decreases.

For d = 0 we have equilibria in (0, 0) and (5/4,−5/16). To find
the d-coordinate of the saddle-node, we can look for the parameter
value where the two nullclines are tangent, which happens when the
equation (

x2
1 + x2 − x1 + d

)
|x2=−x1/4 = x2

1 −
5
4

x1 + d = 0

has a single solution, that is, when(
5
4

)2
− 4d = 0.

This is at
d =

25
64

.

Next, we should check whether the two equilibria can have a Hopf
bifurcation. The Jacobian at an arbitrary equilibrium is

J f (x) =

(
2x1 − 1 1
−1 −4

)
.

At a Hopf bifurcation we must have tr(J f (x)) = 0 and det(J f (x)) >
0, that is,

2x1 − 5 = 0,

−8x1 + 6 > 0.

The system does not have solutions, therefore there cannot be Hopf
bifurcations in the system.
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Exercise 62

Study the generic bifurcations of equilibria of the system

ẋ1 = px1x2 + x2
1

ẋ2 = 3x1x3
2 + 1

when p > 0, and tell if the system can have a limit cycle.

Answer of exercise 62

The equilibria solve the system

px2 = −x1

x1 = − 1
3x3

2
,

therefore they are located at x1 = ∓3−
1
4 p

3
4 , x2 = ±(3p)−

1
4 . We may

begin studying their bifurcations by sketching the nullclines.
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Notice that only the x1 nullcline (blue) depends on p. The system
has exactly two equilibria for all values of p > 0, therefore we can
exclude the occurrence of a generic saddle-node. We could draw the
same conclusion by checking the determinant of the Jacobian at the
equilibrium. We have

J f (x̂) =

(
px2 + 2x1 px1

3x3
2 9x1x2

2

)∣∣∣∣∣
x=x̄

=

(
∓3−

1
4 p

3
4 ±3−

1
4 p

7
4

±3
1
4 p−

3
4 ∓3

9
4 p

1
4

)
,

therefore
det J f (x̄) = 9p− p ̸= 0, ∀ p > 0.
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The determinant is never null, therefore the equilibria never have a
zero eigenvalue.

To investigate the possibility of a Hopf bifurcation of one of the
two equilibria x̄, we may check if there exists a value of p such that
J f (x̂) has null trace and positive determinant. We have

trJ f (x̄) = ∓3−
1
4 p

3
4 ∓ 3

9
4 p

1
4 .

The trace has a constant sign for p > 0 at both equilibria, therefore
we may exclude the occurrence of Hopf bifurcations.

Finally, we may rule out the existence of periodic orbits (and there-
fore of limit cycles) using Dulac’s criterion with g(x) = 1

x1
:

∇ · g(x) f (x) = ∇ ·
(

px2 + x1
3x3

2 +
1
x1

)
= 1 + 9x2

2 > 0, ∀ x ∈ R, ∀p ∈ R.

Exercise 63

Identify all codimension-1 bifurcations of equilibria in the system

ẋ1 = x1 + 4x2
2 − 1,

ẋ2 = x2
1 − x2

2 + p,

when parameter p changes in R. (You don’t need to check if the
bifurcations are degenerate)

Answer of exercise 63

The x1-nullcline is the parabola x1 = 1− 4x2
2, and does not depend

on p. To plot the x2 nullcline we may notice that the function p =

x2
2 − x2

1 defines a saddle surface:
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For p = 0 the x2 nullcline is composed of a pair of straight lines cross-
ing the origin, while other values of p correspond to two parabolas
with axis of symmetry aligned along the x2 axis for p > 0, or the x1

axis for p < 0. The phase portraits for p = 2, p = 0, and p = −2 are
as follows
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We should expect three saddle-node bifurcations and, possibly, Hopf
bifurcations. The Jacobian is

J f (x) =

(
1 8x2

2x1 −2x2

)
.

A saddle-node occurs when det(J f (x)) = 0, that is

−2x2 − 16x1x2 = 0.

The above systems has solutions x2 = 0 or x1 = − 1
8 . When x2 = 0,

solving f (x, p) = 0 we obtain x1 = 1 and p = −1, therefore at
this parameter value we have a saddle-node, corresponding to the
two equilibria on the right colliding and disappearing. When x1 =

−1/8, solving f (x, p) = 0 we obtain x2 = ± 3
4
√

2
and p = 17

64 . At
this parameter value, we have two pairs of equilibria simultaneously
undergoing saddle-node bifurcations.

A Hopf occurs when tr(J f (x)) = 0 and det(J f (x)) > 0. The first
condition gives 1− 2x2 = 0, that is, x2 = 1

2 , and plugging this into
f (x, p) = 0 we obtain x1 = 0 and p = 1

4 . At these coordinates we
have det(J f (x)) = −2x2 − 16x1x2 = −1 < 0, therefore we do not
have Hopf bifurcations.

Exercise 64

Consider the nonlinear circuit
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R = 2

L ≃ 1

x1
C ≃ 3x2 NLv

i

which we saw some chapters ago, where the nonlinear element NL
has characteristic

i = −v + v3.

The circuit is modelled by the system

ẋ1 =
x2 − Rx1

L
,

ẋ2 =
−x1 + x2 − x3

2
C

,

and is known to have no limit cycle for the nominal parameter values.
While we have a very precise resistor R = 2, the capacitor and the
inductor have a relatively large tolerance. Determine what are the
attractors of the system for its nominal parameters, and what is the
effect of the uncertainty in C and L on the attractors, in terms of
bifurcations.

Exercise 65

At a transcritical bifurcation, an equilibrium has an eigenvalue
equal to 0, with

∂2

∂x2
1

f1(x̄1(p), p) ̸= 0,

and
∂

∂p
f1(x̄1(p), p) = 0.

Perturbing p from the bifurcation value we obtain the following bi-
furcation diagram.

−2 −1 0 1 2
−2

−1

0

1

2

p

x 1

How will the bifurcation diagram change if the equations are slightly
perturbed, causing

∂

∂p
f1(x̄1(p), p) ̸= 0?
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* Exercise 66

A Bogdanov-Takens is a codimension-2 bifurcation of continuous-
time equilibria, where an equilibrium has two eigenvalues at 0. One
of the possible generic 2-parameter bifurcation diagrams is the fol-
lowing

SN

HOM

H
BT

SN = Saddle-Node
H = Hopf

HOM = Homoclinic

Even though the above diagram is generic for n−dimensional sys-
tems, let us consider it for a planar system. In that case, the homo-
clinic bifurcation (HOM) implies the structurally unstable connection
of the stable and unstable manifolds of a saddle equilibrium, and the
simultaneous collision of a limit cycle with the equilibrium, as in the
following representation.

Using the above information, and everything you know about local
codimension-1 bifurcations, sketch the phase portrait you expect to
find in each of the four parameter regions surrounding the bifurca-
tion, and on the three boundaries, highlighting the attractors, for a
planar system.

The planar case of the homoclinic
bifurcation is described by the
Andronov-Leontovich theorem,
and can only give rise to scenarios
similar to the one depicted here. In
more than 2 dimensions, however,
more complex scenarios exist, where
even an infinite number of cycles (and
possibly a chaotic attractor, known as
Shilnikov chaos) may be generated at
the bifurcation. See (Kuznetsov, 2004)
for a discussion.

Answer of exercise 66

Two equilibria should appear at the saddle-node, and exist below
the curve, otherwise, the other bifurcation curves could not be there.
Between the SN and the H, one of the two equilibria becomes a focus
and undergoes a Hopf bifurcation at H. The cycle disappears through
the homoclinic bifurcation.
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We expect two see two face-to-face saddle node diagrams (if the

condition det(x) = 0 is preserved), or two continuation branches,

where the two equilibria do not undergo any bifurcation.

* Exercise 57

A Bogdanov-Takens is a codimension-2 bifurcation of continuous-

time equilibria, where an equilibrium has two eigenvalues at 0. Un-

der suitable genericity conditions, one of the possible 2-parameter

bifurcation diagrams is the following Here
and H
that i
unsta

SN

HOM

H

BT

Draw the phase portrait you expect to f nd in each of the four pa-

rameter regions surrounding the bifurcation.

Answer of exercise 57 (Printed in student’s version)

Two equilibria should appear at the saddle node, and exist below

the curve, otherwise the other bifurcation curves could not be there.

Between the SN and the H, one of the two equilibria becomes a focus,

and undergoes a Hopf bifurcation at H. The cycle disappears through

the homoclinic bifurcation

Notice that at the BT point, the nonhyperbolic equilibrium has 2
null eigenvalues. Moving away from the BT, one of the two equi-
libria gains two real eigenvalues and becomes a saddle, setting the
structure for the homoclinic. The other equilibrium gains a complex
conjugate pair, setting the structure for the Hopf. At the BT, the local
phase portrait shows on one side the two halves of the stable and
unstable manifold of the saddle, and on the other side the circular
orbits of the focus.
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