Lab sessions

In these lab sessions we will design, construct, and test a light-sensing solar tracker: a
device that detects the direction of maximum light flux and orients a solar panel
accordingly.

To keep things simple we will use the Lego Mindstorms EV3 set as the hardware for our
tests, with the Lego light sensor as our mock solar panel. Our objective is to design a 1-
degree of freedom tracker, which can move the solar panel around the vertical axis
towards the direction of maximum solar flux. We will use a closed-loop control
algorithm to position the panel, and a continuous optimization algorithm to compute the
optimal panel orientation from the smallest possible number of light flux readings. A
successful design will have to achieve precise positioning in a reasonably short time and
using as little energy as possible.

P bl st

Lab handouts

Session 1: introduction
INTRODUCTION TO SIMULINK

Simulink is a graphical simulation environment. It allows to design and run simulations
in the form of block diagrams, for example using blocks such as the ones we use to
represent linear systems (integrators, gains, etc.).

1)

To warm up, open the latest release of Matlab, and open the Simulink Library.
Select file->new->model, and draw the following model:

T =

Step Integrator Scope

\ 4

By default the step block outputs a step beginning at time t=1 with amplitude 1, hence
the output plotted by the scope should stay at 0 for t<1 and increase with slope 1 for t>1.
Take some time to explore the simulation options, change the simulation time, change
the step block parameters, rescale the scope axes.

Save the model on the Desktop as "Lab1_1".

2)
Let's change the integrator with something more fun. Delete the integrator block, select

"Transfer Fcn" from the Continuous set of the Simulink library, and plug it in place of the
1

$240.1s
denominator to[1 0.1 0] in matlab jargon), and change the simulation time to 50 (to

leave sufficient time for the transient dynamics to die off).

integrator. Edit the block so transfer function is (set the numerator to [1] and the

4
\ 4

j - s2+10.1s —

Step Transfer Fcn Scope

: _ 7100, 10, 100
$340.1s2 s sZ2 s+0.1
which is equal to —100 + 10t + 100e %1t in the time domain (check!). Verify that this
is the case in the scope plot.

The Laplace transform of the output, given a step input, is

Now repeat the experiment after putting an integrator (1/s) before the transfer function
block. Compute the output first by hand, then check against the scope plot. Try moving
the integrator after the transfer function, does the output change? Why? Save the model
on the Desktop as " Lab1_2".

Lab handouts

3)
Now we'll learn to interface Simulink with the EV3 brick, and to control an electric
motor.

First, build the Lego system as in the figure

Lab handouts

Let's start with setting up a connection to the EV3 brick:
* plug the motor data cable into port A of the Lego brick
* build a model as in the following figure.

LEGO EV3
Step Port A
Motor
LEGO EV3
» ints > L& » double]
Resetsignal Data Type Conversion PortA Data Type Conversion1 Scope

Encoder

o Double click on both motor and encoder and select "EV3 brick output
port: A".

o Inthe Encoder block, select "Reset mode: Reset by external signal".

o The reset signal is a standard Step block, double click on it and select Step
time: 0.1, Initial value: 1, Final value:0. This will reset the encoder output
to 0 during the first 0.1 seconds, then let it free to record the motor
position.

o Edit the step input with final value 20 (20% of the maximum motor
torque), and leave the step time at 1, so that the input is given well after
the reset signal has turned off.

o The two data type conversion blocks are used to translate the double type
signals output by the step and read by the scope into int8 (8 bit integer)
signals handled by the encoder. Drag them into place and select the
correct data type by double clicking on the block and editing the field
"Output data type".

* select simulation -> mode -> external

* select tools -> run on target hardware -> prepare to run

* in the window "configuration parameters”, section "run on target hardware",
select target hardware -> LEGO Mindstorms ev3, then set the ip address reported
by the brick (you can find it in the Brick Info menu)

For the moment remove the data cable from the sensor, so that the sensor block is free
to rotate. Press play and check if it works. Remember, the motor takes inputs between -
100 and +100, signals beyond this interval are clipped. Save this model in the Desktop
as " Lab1_3".

Lab handouts

4)

Let us try to build a model of the actuator and identify its parameters through some trial
and error. Start with some physical reasoning: a very coarse model of the motor is given
using Newton's law, and assuming that the only forces acting on the axis are the motor's
torque, and a viscous friction. This gives the model

J¥ = u—kx

where x is the angular position (in radians),] the moment of inertia (in kg m?), u the
applied torque (in Nm), and k a frictional torque coefficient. The corresponding transfer
function is

" Js2 + ks

This is similar to our Lab1_2, so we can run the model alongside the real motor and try
to match the model's parameters to those of the real system. Copy the transfer function
from Lab1_2, and connect the diagram as in the following figure.

Torque/100 !
J.2+ks
Transfer Fcn
percent to without sensor cable
Nm
LEGO EV3
Step Port A ::I—'
Motor Scope
LEGO EV3
» int8 > ‘@' > double
| S
Reset signal Data Type Conversion PortA Data Type Conversion1
Encoder Degrees to radians

The triangles are Gain blocks (from the Math Operations block set). The gain block
"percent to Nm" is used to translate the input provided by the controller (which is
measured in percent of the total available torque) into torque, so that the quantities of
the transfer function following the block can be expressed in terms of the physical
properties of the motor and sensor.

Now, by trial and error, try to find your best match of the system's parameters. To guide
your search you can use the following data:
* the maximum torque of the motor (obtained when the input signal is 100) is
equal to 0.2Nm.
* the weight of the color sensor is approximately 15g, to which you must add the
mass of the moving parts of the motor. To convert this into the moment of inertia
remember that the moment of inertia of a body is roughly equal to MR?, where M

Lab handouts

is the mass and R the radius (assuming the body is roughly sphericith
rotation axis going through its centre).
* by the final value theorem (which you will see during class) the slope of the step

o U . .
response of our transfer function is equal to o where U is the motor torque in

Nm and k is the frictional torque.

Note that the simulation step size in the above diagram is set by the sample time of the
Encoder block, and might be too large to integrate correctly certain values of the
parameters. If the simulations don't match what you expect from the transfer function
you can change the solver algorithm by editing Simulation->Model Configuration
Parameters->Solver. Odel4x seems to be rather robust.

You can save this model as Lab1_4, remember to save it on a device of yours as this
computer's disk might be cleaned. Take note of the parameters, as they will be needed
in the next lab session.

5)
(Optional)
It is possible to identify the model through automatic methods (like least square fitting).
Try to do it using the command
>>tfest(data, number of poles, number of zeros)
which is found in the System Identification Toolbox.
Hint:
1. to obtain input and output data from the model you can use two "To Workspace"
block.
2. Double-click on the block and select Save Format: Structure with Time, as the
default selection (Timeseries) does not work with models run in External mode.
3. Extract a vector from the structure using the command
>> output = simout.signals.values
4. prepare the argument of tfest through the command
>>data=iddata(output,input,sampling time).

Lab handouts

Session 2: actuators

Today we will design a control law for the motor.

1)

Draw the following model, using the parameters identified during Lab Session 1 for the
motor transfer function.

1
> Torque/100
\/ #+ J.P+ks L’!

Sine Wave Saturation Transfer Fcn q

percent to without sensor cable
Nm Scope

For a more realistic setup we have included a saturation block after the sine input.
Double click this block and set the upper limit to +100 and the lower limit to -100 to
match the behaviour of the motor controller. For the moment, leave the simulation in
normal mode (i.e. not external), as we will play with this simulated model for a while.
We have added a Bus Creator block (in the Signal Routing block set) to merge the input
and output signals before the scope, so that we can plot the two signals in the same
figure.

* Run the simulation with a sine amplitude of size 20 (20% of the motor maximum
torque), you will observe a phase as well as an amplitude difference between the
input and output signals. Try changing the frequency of the input signal (but
leave the amplitude fixed). How do the phase and amplitude change?

Save the model as Lab2_1.

2)

The changes in the output amplitude observed before can be explained using the
Frequency Response Theorem: for a given transfer function F(s) and for a sinusoidal
input A sin(wt) the output is equal to

|F(iw)| A sin(wt + £(F(iw)))

Let's check how good is our model by testing the real motor with sinusoidal inputs of

different frequencies. Build the following model
N

Sine Wave

LEGO EV3

£

Port A
Motor

LEGO EV3

> in8 > ¥

o

double

h 4

Reset signal Data Type Conversion Port A Data Type Conversion1
Encoder Degrees to radians

Lab handouts

and save it as Lab2_2.
The reset signal is a step block with step time 0.1, initial value 1, and final value 0, and is
used to reset the encoder to 0 at the beginning of the experiment.

Set the sine input amplitude to 20, and the (angular) frequency to 0.5, and run
the model in external mode (i.e., on the Lego brick).
Record the angular frequency in the variable w

>>w=0.5
Measure the amplitude of the output signal (remember: amplitude = (max-
min)/2), move to the main Matlab window and record the amplitude in the
variable y

>>y=
Now repeat the experiment with w = 1, read the amplitude of the output and add
the angular frequency and amplitude to the variables w and y by typing

>>w=[w 1]

>> y=[y (Amplitude you have measured)]
Repeat forw =2, 4, 8, 16, 32.
Notice that this experiment requires reading relatively high-frequency signals (w
= 32 is a sinusoid at roughly 5Hz), and in order to have a readable output we
need to sample at a much higher frequency (twice as big by Shannon's theorem,
much more if we are lazy and don't want to do any fancy signal analysis). To
avoid all problems change the encoder sampling time to 0.01, much higher
frequencies are not supported by the hardware.

During the above experiment you may observe a drift of the output mean value,
which is not predicted by the linear model. Can you explain this drift?

Type

>> plot(w,y)
to plot the frequency response of the real system. Now compute the frequency
response of our linear model using the frequency response theorem:

>> ysim=abs(20*Torque/100* (1./((J*w*i).*2 +k*w*i)))
where Torque,] and k are your model's parameters (i.e. the parameters of the
blocks in the diagram of Lab2_1). Plot the frequency response of the linear
system in red on top of the previous one typing

>>hold on

>>plot(w,ysim)
and change the axes to logarithmic scaling in Edit->Axes Properties. You should
obtain something like this:

10'

Lab handouts

which shows a pretty good match. Notice that the error increases at high
frequency, since the measurement errors and unmodeled dynamics become

more prominent in this range.

3)
Let's test the model when we step outside of the (quasi-) linear range. Put the two
diagrams we built before side by side in the same model as follows.

1
P Torque/100
7F J.P+ks
Saturation Transfer Fcn
percent to without sensor cable
Nm
LEGO EV3
. > @ .
Sine Wave Port A
Motor Scopet
LEGO EV3
o ints > L » double
L | o
Resetsignal Data Type Conversion PortA Data Type Conversion1
Encoder Degrees to radians

Save as Lab2_3. Run the model with a sine wave of amplitude 20, and then with one of
amplitude 150, and check if they behave similarly (they should).

4)
In order to construct our solar tracker we need to design a control law to precisely place
the motor at a given angular position. Draw the following model and save it as Lab2_4.

1
+) b A= | Torque/100 >
J.2+ks
Step Gain Saturation Transfer Fcn Scope
percent to without sensor cable
Nm
Transport
Delay

Ignoring the saturation, and calling F(s) the transfer function of the open loop system,

the transfer function of the feedback system pictured above s
F(s) __ Gain-Torque
1+F(s) 100Js2+100ks+Gain-Torque’

Lab handouts

the stronger the gain the stronger the effect of the feedback. However, since a feedback
connection does not preserve the stability of the open loop system, we must make sure
that we do not make our system unstable by choosing too large a gain.
Plot the poles of the above transfer function (the roots of the denominator) for gain
values between 1 and 1000 by typing

>>hold on

>>gain = 1:1000;

>> for i=1:1000

plot(gain(i),real(roots([100*] 100*k gain(i)*Torque])))

end

L L L L J
200 400 600 800 1000

The closed-loop system has two real and negative poles for small gain values, which
become complex conjugate with negative real part for larger gain values. Hence we
expect a system that is always stable, but may oscillate towards its equilibrium if the
gain is too large.

[s this result robust to modelling errors? Assume for instance that the output is
measured with a little delay (for example 0.01 seconds), due to signal propagation and
the discrete nature of the digital control. Is the feedback system stable in the presence of
such a delay? We can test this by adding a Transport Delay block (from the Continuous
block set) on the feedback line, and setting the Time Delay to 0.01. Simulate Lab2_4
with the delay block and test what happens for different gains. Choose a gain value that
brings the system quickly to the equilibrium without too many oscillations.

Note: robustness to delay can be more properly discussed using gain and phase margin,
if you can take some time to look these concepts up, and try to apply them in the case of
our model.

5)

Now we will try to implement the feedback law we designed before on the real system.
Draw the following diagram and save it as Lab2_5, set a step size equal to pi, and set the
gain equal to the value chosen at the previous step.

Lab handouts

LEGO EV3
Step Gain Port A
Motor
LEGO EV3
> ints > L » double 2%0i/360 >
Resetsignal Data Type Conversion PortA Data Type Conversion1 Scope

Encoder
If the gain is not too big the motor should complete about half a turn, but you will
probably notice a slightly different response than the linear model, for example more
oscillations and some steady state error (i.e. the motor does not stop exactly at pi). Also,
notice that now if we increase the gain too much the system becomes unstable (probably
because of the delay?). Try this carefully, and remember to set a simulation time not too
big (10 seconds should be more than enough) so as not to stress too much the motor
components. Set the gain back to the value chosen at step 4.

Degrees to radians

Now plug the data cable into the color sensor, and connect it to port 1. The cable acts as
a nonlinear spring on the system, adding one more unmodelled effect. Run the system
again and see how it behaves. These differences in dynamics are due to small (or not so
small) errors in our model, and the steady state error in particular is due to a rather
large amount of friction and slack in the motor gears. This can be a problem in our
application, as we need to place the color sensor within a few degrees of the desired
position.

6)

To improve the performance of the control law we can put an integrator in parallel with
the proportional gain, realising a PI controller (Proportional Integral).

Draw the following diagram and save it as Lab2_6.

1
3 LEGOEV3

Integrator Gain1 @

I Port A

Motor

Step Gain

LEGOEV3
» in8 > ¥ » doudle 20i/360 »]

o

Reset signal

Data Type Conversion

Port A

Encoder

Data Type Conversion1

Degrees to radians

Scope

Change the integral gain until you find a good compromise between speed and
amplitude of the oscillations. You may also try small changes in the proportional gain to
see if you can obtain a better positioning. Try to find P and I gains so that the sensor
reaches its desired position, within a couple of degrees, in at most ten seconds. We
could design an even faster controller, but since our system is expected to complete a set
of measurements only a few times every hour, this is a reasonable target for the

Lab handouts

moment. (The choice of the PI gains can be somewhat complex, there are a number of
guidelines to direct this choice, see e.g. the Ziegler-Nichols method.)

Lab handouts

Session 3: sensors

Let us start by checking the performance of the color sensor, and designing a filter to
reject disturbances such as objects rapidly passing in front of the sensor.

1)
Start with a blank model, and place the Color Sensor and Scope blocks as in the figure.

LEGO EV3
& S
Port 1 ambient
Color Sensor light intensity

Double click colour sensor block, select mode:ambient light intensity.
Save the model as Lab3_1.

Plug the sensor into port 1 of the brick, run the model in external mode, and wave the
sensor in front of a source of light. You will see that the signal changes rapidly, meaning
that the dynamics of the sensor is rather fast.

Lab handouts

2)

For our system we may need to filter out small disturbances, such as somebody walking
in front of the sensor. We can do this by letting the sensor's output through a linear
filter, as in the following figure.

LEGO EV3
& » double > ! >]
a.stb
Port 1 Data Type Conversion Transfer Fcn ambient
Color Sensor light intensity

Save the system as Lab3_2. Try the effect of different transfer functions on the filtered
signal in order to obtain a system whose step response converges within 1% of the
equilibrium in less than 10 seconds, while reducing the amplitude of a sine-wave
disturbance at frequency 3.14rad/sec (1/2Hz) by at least a factor 10. You can test the
performance of the filter first in simulation by substituting the color sensor with a
computer-generated signal:

b

Step
» double > L >]
\/ a.stb
Sine Wave Data Type Conversion Transfer Fcn ambient
light intensity
LEGO EV3

&)
Port 1

Color Sensor

Hint: the filter can be designed as the series connection of two first-order filters of the
form 1/(as+b). In the Matlab command line you can use

>>N=[1]

>>D=[a b]

>>sys=tf(N,D)

>>step(sys,10)

to see a plot of the step response of the system defined by vectors N and D for times
between 0 and 10, while you can use the frequency response theorem (amplitude =
|F(iw)|) to compute the amplitude of the output given an input at frequency w (if you
have seen it in class, you could get the frequency-amplitude response from the Bode
diagram of the transfer function).

Hint : given two polynomials (as+b) and (cs+d) described by the vectors [a b] and [c d],
you can compute the coefficients of the product of the polynomials as >>
CoefficientsOfTheProduct = conv([a b],[c d])

3)

We need to design a finite state automaton that collects a number of evenly spaced
sensor readings, which will be used to decide the angle of maximum brightness. We will
use the library Stateflow in Simulink.

Lab handouts

A finite state automaton is a graphical representation of a program in the form of a
diagram. The advantage of using a Stateflow automaton instead of a standard Matlab
function is that the automaton can easily incorporate temporal specification (such as
assign a particular value to a given variable after n seconds), which are useful to control
our system in time. In Stateflow, an automaton is represented by a set of states, each of
which contain assignment instructions like the ones you can type in the Matlab
command line (e.g. a=1, b=[1 2 3]), and transition condition, which define the conditions
under which a transition between two states happens. For starters, design the following
diagram using the elements in the Stateflow library.

[b<5]

[b>=5] [Stop

Click Chart-> Add Other Elements -> Local Data, and add the local variable a. This
variable is visible to all blocks of this chart (which behaves as a single Matlab function),
but is not visible outside the chart. Then click Chart -> Add Inputs & Outputs, and add
the output b. This makes b available to the simulink environment: go back to the main
simulink environment by clicking the upward arrow and you will see that the chart
block now has an output named b.

Let's see what the different ingredients of the above chart mean:

* The arrow on the left is the default transition, which is executed at the beginning
of the simulation.

* The first line of each block is simply the name of the state, it has no effect on the
code.

* The keyword "entry:" means that all following instructions are executed only
once each time the state is entered. Alternatively one can use "during:", meaning
the instructions are repeated continuously (at each simulation time step) while in
the state, and "exit:", meaning the instructions are executed once when the state
is exited.

* The keyword "after(2,sec)" on the transition is an event (in this case, a clock
measuring 2 seconds). In general events are written as instructions with no
brackets over a transition, and the transition is executed only when the event
takes place

* The keywords "[b<5]"and "[b>=5]" are conditions: the corresponding transition
takes place only if the condition is verified. In general, conditions are written
between square brackets.

Now go up one level to the main Simulink model, and add a scope to plot the value of the
output b, as in the following figure.

Lab handouts

& =

Chart

Save the model as Lab3_3. Simulate the system; you should see the variable b
incremented by 1 each time the block "Loop" is entered. Change the keyword "entry:" in
the Loop block with "during:" and "exit:", and repeat the simulation. What happens?
Hint: the result with the keyword "during:" depends on the simulation step time.

Scope

4)

Now let's write an automaton that reads takes a sequence of light readings at evenly
spaced angles. Open a new model, insert a Stateflow chart and draw the following
diagram.

i<number_of_readings

Initialise_variables 4/ read_light \

entry: ,
i=0; [reset_signal==0] | ¥ after(10,sec) entry: 2 [i>=number_of_readings] (stop
- light(i+1)=light_from_sensor =)

i=i+1 ~

exit

angular_position = i*delta_angle

1=0;

=t light = zeros(number_of_readings,1)
delta_angle=2*pi/number_of_readings
angular_position = 0;

Add the inputs "reset_signal" and "light_from_sensor" (Chart->Add Inputs & Outputs),
and the output "angular_position".

We need to define a global variable, visible from all elements of the model, containing
the number of readings that we want to execute. Go up to the level of the main model
and select Tools -> Model Explorer -> NameOfTheFile; click on the Callbacks panel,
select InitFcn (this is a function that is run at the beginning of the model, we will use it to
define a global variable setting the number of readings and accessible throughout the
model). Write "number_of_readings = 6.

Then, we must declare all the variables used by the Stateflow chart, and specify their
properties:

* (o back to the chart (double click on the stateflow block) and select Chart-> Add
Other Elements-> Local Data

* Add the local variable "i" with size : 1

* Repeat as above, and add the local variable "delta_angle" with size : 1

* Repeat as above, and add the local variable "light" with size
number_of readings. Tick the checkbox "Variable size" for this variable.

* Select Chart -> Add Other Elements -> Constant and add the constant
number_of readings (this way the Stateflow chart has access to the global
variable number_of_readings which we defined in the init function)

* In view-> model explorer -> model explorer-> chart, select scope: constant for
number_of readings, and set Initial value : number_of _readings (this gives it the
value assigned by the initialization function we defined before).

Now go up to the main model level and connect the chart to the models we prepared in
Lab2_6 and Lab3_2, as in the following figure.

Lab handouts

LEGOEV3

& e

Port 1 Data Type Conversion2 Rate Transition Transfer Fcn Transfer Fen1
Color Sensor

4 N

P light_from_sensor D
w angular_position
reset_signal D

- J

Chart LEGOEV3
T} = o
Reset signal Data Type Ci i PortA Data Type Conversion1 Scope

Encoder Degrees to radians

1
b LEGOEV3
Integrator Gain1 8 @
b PortA

Motor

Gain

Save the model as Lab3_4. Notice the Rate Transition block added in the color sensor
signal line. This serves to translate the discrete time variable returned by the color
sensor into a continuous time variable suitable to feed the transfer functions. The block
is simply a zero-order hold, that is, a memory which reads its input value at discrete
times and keeps the output constant in between readings.

Run the simulation on the Lego brick and check if it places correctly the sensor at
equally spaced angles.

Lab handouts

Session 4: optimization

1)

Load the last model we built in Session 3, modify its chart as in the following figure, and
save it as Lab4_1. The MATLAB Function and Simulink Function blocks can be dragged
in the chart from the left-side menu.

[i<number_of_readingsKangular_position=i*delta_angle}

muuahsefvarlab\es

entry: read_light
i=0;

=t light = zeros(number_of_readings, 1) ;
delta_angle=2*pi/number_of_readings:
angular_position = 0;

-

[reset_signal==0]

entry
light(i+1)=light_from_sensor
\ [i>=number_of_readings]

\

entry:

angular_position = Optimize(light);
SaveToWorkspace(light)

Simulink Function
SaveToWorkspace(save_input)

For the moment, double click on the Matlab Function (this will open the function in the
standard Matlab editor) and edit it as follows.

fi i light
MATLAB Function optimal_angle = Optimize(opt_light) ind_maximum_lig|

function optimal_angle = Optimize(o_light)
optimal_angle = 0;
end

This function always returns 0, we will change it later to compute the direction of
maximum brightness.

First, we want to have an idea of how the light field looks like around our system. To do
so, we need to use the sensor to collect some data, and save it to the workspace. We can
do this using the Simulink function. Click on the function name and call it
"SaveToWorkspace(save_input)". This defines a function "SaveToWorkspace" which
takes the argument "save_input".

Now double click on the function and you will see the argument as a simulink block.
Connect it to a To Workspace block as in the following figure.

Lab handouts

1) p output_light

save_input

To Workspace

Double click in the output_light block in the function, and set "format: structure with
time" (must be like this for all external mode exports). Double click on the argument
(save_input) block and select "signal attributes -> port dim: number_of readings" and
"variable size: yes".
The state "find_maximum_light" is calling this function on entry, this will save the value
of the vector "light" in the workspace with name "output_light".
Changing the initialization constant number_of readings to 24, collect a vector of
readings and plot it against the angle:

>>angles = 0:2*pi/number_of_readings:2*pi*(number_of_readings-

1)/number_of_readings;

>>plot(angles,output_light);
(Remember that each reading requires around 10 seconds, so this will take a while!)
The result should be a roughly unimodal distribution, that is, a function with a single
peak (like a Gaussian distribution). We need to find a way to reconstruct such a function,
and find its maximum, using as few readings as possible, in order to spare time and
energy.

2)

All is left to do is to write the function Optimize to find the angle of maximum brightness.
To make the best possible use of the data, we can assume that the light field has a known
shape, and describe this shape as a function f(x,p), where p are the parameters of the
function. Then we can set up a parameter identification problem:

min,, [f(x,p) — light(x)]?

where light(x) is the value of brightness measured at the angle x. Remember, this is the
square of a vector, so it reads as the scalar product of the vector with itself.

Before writing the algorithm in the Stateflow automaton let's tune it through some trial
and error in the Matlab command line. Let's try to use a sinusoid of period 2pi as our
function f (x,p). We have that

a + b sin(x) + ccos(x) = a+dsin(x + @)
that is, any sinusoid a + d sin(x + ¢) with phase ¢ and mean value a can be written as

the sum of a sine and a cosine with phase 0, plus a constant. Thus, our optimization
problem is

Lab handouts

ming;, oy [@ + b sin(x) + ¢ cos(x) — light(x)]?.

If we call L the vector light(x), call S and C the vectors sin(x) and cos(x) evaluated at the
same angles x, and call 1 a vector of ones of the same size as L, C, and S, the optimization
problem becomes

a
ming, p ¢} l (1S bl l
c

(] [
a

mingg p, l[a bcl[1SC]T[15C] lbl 2[abc][1SC)TL + LLT
c

dh(p)

We know that the optimality condition for a function h(p) is W ——=0, and we can apply

this condition to the objective function f(p) above, with p = [a b c]. We have

a
_‘11;;”) =2[15C]"[15C] H — 2[15C]"L=0
Cc

Solving for [a b c] we obtain
a
lbl =[[1scyr[1scyr1sciy’L
c

Use this formula to compute the coefficients a, b, ¢ that best interpolate the light data
you collected, and plot the result to test if it is good enough. First, prepare a vector with
the values of the angular positions:

>>angles=[]
Then, prepare the matrix [1 S C] (which we call M):
>>M = ones(number_of _readings, 3);
>>M(:,2)=cos(angles);
>>M(:,3)=sin(angles);
Then compute [a b c]:
>>optimal_coefficients = (M"*M)”*(-1)*M"* output_light
>>a = optimal_coefficients(1);
>>b = optimal_coefficients(2);
>>c = optimal_coefficients(3);

Now plot the brightness values measured by the system, and hold the figure

>>plot(angles, output_light,'ro")
>>hold on

Lab handouts

>>x = linspace(0,2*pi,100);
>>y = a+b*cos(x)+c*sin(x);
>>plot(x,y)

Repeat the process above reducing the number of brightness measures to 12, 6, and
then 3 (take a subset of measures from the vector output_light, for example take one
every two elements, and regenerate the angles vector accordingly), and see what is the
minimal number of measures you can use to obtain a good approximation of the real
brightness distribution.

Once you have found a good compromise between number of readings and precision,
you are ready to write the Stateflow function Optimize.

Double click on the funciton Optimize(o_light) to change its code. Rewrite the function's
code so that it computes [a b c] as we did before, and generates the vectors

x = linspace(0,2*pi,100);
y = a+b*cos(x)+c*sin(x);

then type

[~,i]=max(y);
opt=x(i);
optimal_angle=opt(1);

to assign to the output "optimal_angle" the value of the angle x where y reaches its
maximum. Save the model as Lab4 2.

Run the model on the Lego brick to test if it works.

Good luck!

